Document Type : Research Articles

Authors

1 Department of Computer and IT Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran

2 Department of Computer Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran

Abstract

Quantum-dot Cellular Automata (QCA) is a new technology for eliminating some of the problems of existing technologies such as CMOS. Some of the key advantages of QCA are an intersection of wires in the same plane, high speed, small area, power consumption, complexity and low cost. Employing a three-input majority gate, a five-input majority gate and three logic gates, this study presents a full-adder circuit in a single layer which for higher efficiency and avoiding much complexity and based on the function of the intended full-adder circuit, the five-input gate is proposed. The proposed full-adder circuit and the proposed ripple adder circuit are compared with previous designs regarding complexity, number of cells, and area and the results are reported. Moreover, proposed circuits’ power consumption has been calculated by using QCApro. These results indicate that the proposed full adder design in comparison with previous similar design achieved 36%, 20% and 4.4% reduction in the number of cells, latency and power consumption, respectively.

Keywords

Main Subjects

[1] R. Compano, L. Molenkamp and D. Paul, "Roadmap for
nanoelectronics," European Commission IST Programme,
Future and Emerging Technologies, 2000.

[2] C. Lent, P. Tougaw, W. Porod and G. Bernstein, "Quantum
cellular automata", Nanotechnology, vol. 4, no. 1, pp. 49-
57, 1993. Available: 10.1088/0957-4484/4/1/004.

[3] S. Sarmadi, S. Sayedsalehi, M. Fartash and S. Angizi, "A
Structured Ultra-Dense QCA One-Bit Full-Adder Cell",
Quantum Matter, vol. 5, no. 1, pp. 118-123, 2016. Available:
10.1166/qm.2016.1263.

[4] S. Angizi, E. Alkaldy, N. Bagherzadeh and K. Navi, "Novel
Robust Single Layer Wire Crossing Approach for Exclusive
OR Sum of Products Logic Design with Quantum-Dot
Cellular Automata", Journal of Low Power Electronics, vol.
10, no. 2, pp. 259-271, 2014. Available:
10.1166/jolpe.2014.1320.

[5] K. Navi, R. Farazkish, S. Sayedsalehi and M. Rahimi
Azghadi, "A new quantum-dot cellular automata full-adder",
Microelectronics Journal, vol. 41, no. 12, pp. 820-826,
2010. Available: 10.1016/j.mejo.2010.07.003.

[6] K. Navi, S. Sayedsalehi, R. Farazkish and M. Azghadi,
"Five-Input Majority Gate, a New Device for Quantum-Dot
Cellular Automata", Journal of Computational and
Theoretical Nanoscience, vol. 7, no. 8, pp. 1546-1553, 2010.
Available: 10.1166/jctn.2010.1517.

[7] S. Hashemi, M. Tehrani, K. Navi, and Essays, “An efficient
quantum-dot cellular automata full-adder,” Scientific
Research and Essays, vol. 7, no. 2, pp. 177-189, 2012.

[8] S. Hashemi and K. Navi, "A Novel Robust QCA Fulladder", Procedia Materials Science, vol. 11, pp. 376-380,
2015. Available: 10.1016/j.mspro.2015.11.133 [Accessed
13 February 2022].

[9] S. Sayedsalehi, M. Moaiyeri and K. Navi, "Novel Efficient
Adder Circuits for Quantum-Dot Cellular Automata",
Journal of Computational and Theoretical Nanoscience,
vol. 8, no. 9, pp. 1769-1775, 2011. Available:
10.1166/jctn.2011.1881.

[10] C. Labrado and H. Thapliyal, "Design of adder and
subtractor circuits in majority logic‐based field‐coupled
QCA nanocomputing", Electronics Letters, vol. 52, no. 6,
pp. 464-466, 2016. Available: 10.1049/el.2015.3834.

[11] A. Bahar and S. Waheed, "Design and
implementation of an efficient single layer five input
majority voter gate in quantum-dot cellular automata",
SpringerPlus, vol. 5, no. 1, 2016. Available:
10.1186/s40064-016-2220-7.

[12] K. Kim, K. Wu and R. Karri, "The Robust QCA Adder
Designs Using Composable QCA Building Blocks", IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 26, no. 1, pp. 176-183, 2007.
Available: 10.1109/tcad.2006.883921.

[13] A. Gin, P. Tougaw and S. Williams, "An alternative
geometry for quantum-dot cellular automata", Journal of
Applied Physics, vol. 85, no. 12, pp. 8281-8286, 1999.
Available: 10.1063/1.370670.

[14] I. Hanninen and J. Takala, "Robust Adders Based on
Quantum-Dot Cellular Automata", 2007 IEEE
International Conf. on Application-specific Systems,
Architectures and Processors (ASAP), 2007. Available:
10.1109/asap.2007.4459295 [Accessed 13 February 2022].

[15] P. Tougaw and C. Lent, "Logical devices implemented
using quantum cellular automata", Journal of Applied
Physics, vol. 75, no. 3, pp. 1818-1825, 1994. Available:
10.1063/1.356375.

[16] R. Akeela, and M. D. Wagh, "A five-input majority gate in
quantum-dot cellular automata." NSTI Nanotech, pp. 978-
981.

[17] A. Roohi, H. Khademolhosseini, S. Sayedsalehi and K.
Navi, "A symmetric quantum-dot cellular automata design
for 5-input majority gate", Journal of Computational
Electronics, vol. 13, no. 3, pp. 701-708, 2014. Available:
10.1007/s10825-014-0589-5.

[18] S. Sheikhfaal, S. Angizi, S. Sarmadi, M. Hossein Moaiyeri
and S. Sayedsalehi, "Designing efficient QCA logical
circuits with power dissipation analysis", Microelectronics
Journal, vol. 46, no. 6, pp. 462-471, 2015. Available:
10.1016/j.mejo.2015.03.016.

[19] P. Tougaw and C. Lent, "Dynamic behavior of quantum
cellular automata", Journal of Applied Physics, vol. 80, no.
8, pp. 4722-4736, 1996. Available: 10.1063/1.363455.

[20] J. Timler and C. Lent, "Power gain and dissipation in
quantum-dot cellular automata", Journal of Applied Physics,
vol. 91, no. 2, pp. 823-831, 2002. Available:
10.1063/1.1421217.

[21] W. Liu, S. Srivastava, L. Lu, M. O'Neill and E.
Swartzlander, "Are QCA cryptographic circuits resistant to
power analysis attack?", IEEE Transactions on
Nanotechnology, vol. 11, no. 6, pp. 1239-1251, 2012.
Available: 10.1109/tnano.2012.2222663.

[22] S. Srivastava, S. Sarkar and S. Bhanja, "Estimation of
Upper Bound of Power Dissipation in QCA Circuits", IEEE
Transactions on Nanotechnology, vol. 8, no. 1, pp. 116-127,
2009. Available: 10.1109/tnano.2008.2005408.

[23] S. Srivastava, S. Sarkar and S. Bhanja, "Estimation of
Upper Bound of Power Dissipation in QCA Circuits", IEEE
Transactions on Nanotechnology, vol. 8, no. 1, pp. 116-127,
2009. Available: 10.1109/tnano.2008.2005408.

[24] M. Rahimi Azg, O. Kavehei and K. Navi, "A Novel Design
for Quantum-dot Cellular Automata Cells and Full
Adders", Journal of Applied Sciences, vol. 7, no. 22, pp.
3460-3468, 2007. Available: 10.3923/jas.2007.3460.3468.
[25] K. Walus, T. Dysart, G. Jullien and R. Budiman,
"QCADesigner: A Rapid Design and Simulation Tool for
Quantum-Dot Cellular Automata", IEEE Transactions On
Nanotechnology, vol. 3, no. 1, pp. 26-31, 2004. Available:
10.1109/tnano.2003.820815.

[26] A. Thiem, "Qcapro: Professional functionality for
performing and evaluating qualitative comparative analysis,
r package version 1.1-0," URL: http://www. alrikthiem.
net/software, 2016.