Document Type : Research Articles

Authors

1 Department of Mathematics, Payame Noor University, P.O.Box 19395-3697, Tehran, Iran

2 Faculty of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan, Iran

Abstract

This article aims to introduce a modern numerical method based on the hybrid functions, consisting of the Bernoulli polynomials and Block-Pulse functions. An indirect approach is proposed for solving the fractional optimal control problems (FOCPs). Firstly, the two-point boundary value problem (TPBVP) is calculated for a class of FOCPs, including integer-fractional derivatives, leading to a system of fractional differential equations (FDEs), which have the left and right-sided Caputo fractional derivatives (CFD). Therefore, a new approach is proposing to achieve the left Riemann-Liouville fractional integral (LRLFI) and right Riemann-Liouville fractional integral (RRLFI) operators for Bernoulli hybrid functions. Then, hybrid functions approximation, LRLFI, and RRLFI operators, and the collocation method are used to solve the TPBVP. The error bounds for the hybrid function and LRLFI and RRLFI operators are also presented. Moreover, the convergence of the proposed method is proved. Finally, the simplicity and accuracy of the method are illustrated using some numerical examples.

Keywords

Main Subjects