Document Type : Research Articles


University of Mohaghegh Ardabili


This paper presents a novel topology of permanent magnet brushless DC motors. Brushless DC motors usually experience torque ripple mainly caused by cogging torque. In the proposed motor, the whole structure of the rotor’spermanent magnets hasbeen changed so that the cogging torque is considerably mitigated. The philosophy behind this modification depends on the  way  of  flux-path  production  in  the rotor  structure  and  it  should  be  similar  to  the  way  of  motor  phases. Aninitial electromagnetic analysis is, first,carried out using the finite element method. Asensitivity analysis is, next,included to obtain the  most  important  design  parameters  for  the  proposed  structure.  The  different  performance  parameters of  the  motor are calculated and compared betweenthe proposed structures and the conventional BLDC structures. The results revealthat the proposed  motor  has  a  considerably lowertorque  ripple  retaining an average  value  of  the  produced  torque.  The  proposed structure  is  also  compared  with an asymmetrical  V-type  structure  and  the  results  further  show  the  effectiveness  of  the proposed structure.


Main Subjects

[1] Y. Chen, X. Zhu, L. Quan, Z. Xiang, Y. Du and X. Bu, “A
V-Shaped PM Vernier Motor With Enhanced Flux-
Modulated Effect and Low Torque Ripple,” IEEE Trans.
Magnetics, vol. 54, no. 11, pp. 1-4, Nov. 2018.
[2] Z. S. Du and T. A. Lipo, “Reducing Torque Ripple Using
Axial Pole Shaping in Interior Permanent Magnet
Machines,” IEEE Trans. Industry Appl., vol. 56, no. 1, pp.
148-157, Jan.-Feb. 2020.

[3] Q. Chen, G. Xu, G. Liu, W. Zhao, L. Liu and Z. Lin,
“Torque Ripple Reduction in Five-Phase IPM Motors by
Lowering Interactional MMF,” IEEE Trans. Ind.
Electronics, vol. 65, no. 11, pp. 8520-8531, Nov. 2018.

[4] Bianchini, C., Immovilli, F., Lorenzani, E., Bellini, A.,
Davoli, M., “Review of design solutions for internal
permanent-magnet machines cogging torque reduction,”
IEEE Trans. Magn., vol. 48, no. 10, pp. 2685 -2693, Oct.

[5] Hao, L., Lin, M., Xu, D., Li, N., Zhang, W., “Cogging
torque reduction of axial-field flux-switching permanent
magnet machine by rotor tooth notching,” IEEE Trans.
Magn., vol. 51, no. 11, pp.1-4, Nov. 2015.

[6] Zhao, W., Lipo, T.A., Kwon, B., “Torque pulsation
minimization in spoke-type interior permanent magnet
motors with skewing and sinusoidal permanent magnet
configurations, IEEE Trans. Magn., vol. 51, no.11, pp.1-4,
Nov. 2015.

[7] H. M. Cheshmeh-Beigi
, A. Mohamadi, “Torque ripple
minimization in SRM based on advanced torque sharing
function modified by genetic algorithm combined with
fuzzy PSO,” International Journal of Industrial Electronics,
Control and Optimization (IECO), vol. 1, no. 1, pp. 71-80,

[8] M. Sumega
, P. Rafajdus, M. Stulrajter, “Current harmonics
controller for reduction of acoustic noise, vibrations and
torque ripple caused by cogging torque in PM motors under
FOC operation,” Energies, vol. 13, no. 10, pp. 1-23, May

[9] W. Fei, Z. Q. Zhu, “Comparison of Cogging Torque
Reduction in Permanent Magnet Brushless Machines by
Conventional and Herringbone Skewing Techniques,”
IEEE Trans. Energy Convers., vol. 28, no. 3, Sep. 2013.

[10] Gyu-Hong Kang, Young-Dae Son, Gyu-Tak Kim, Jin Hur,
“A novel cogging torque reduction method for interior-type
permanent-magnet motor,” IEEE Trans. Ind. Appl., vol. 45,
no. 1, Jan/Feb. 2009.

[11] Wu Ren, Qiang Xu, and Qiong Li, “Reduction of Cogging
Torque and Torque Ripple in Interior PM Machines with
Asymmetrical V-type Rotor Design,” IEEE Trans. Magn.,
vol. 52, Jul. 2016.

[12] Keun-young Yoon, Byung-il Kwon, “Optimal Design of a
New Interior Permanent Magnet Motor Using a Flared-
Shape Arrangement of Ferrite Magnets,” IEEE Trans.
Magn., vol
.52, Jul. 2016.

[13] D. Wang, X. Wang, M.-K Kim, and S.-Y. Jung, “Integrated
optimization of two design techniques for cogging torque
reduction combined with analytical method by a simple
gradient descent method,” IEEE Trans. Magn., vol. 48, no.
8, pp. 22652276, Aug. 2012.

[14] L. Dosiek and P. Pillay, “Cogging torque reduction in
permanent-magnet machines,” IEEE Trans. Ind. Appl., vol.
43, no. 6, pp. 15651571, Nov./Dec. 2007.

[15] T. Tudorache and I. Trifu, “Permanent-magnet synchronous
machine cogging torque reduction using a hybrid model,”
IEEE Trans. Magn., vol. 48, no. 10, pp. 26272632, Oct.

[16] N. Chen, S. L. Ho, and W. N. Fu, “Optimization of
permanent magnet surface shapes of electric motors for
minimization of cogging torque using FEM,” IEEE Trans. Magn., vol. 46, no. 6, pp. 24782481, Jun. 2010.

[17] S. M. Hwang, J.-B. Eom, Y.-H. Jung, D.-W. Lee, and B.-S.
Kang, “Various design techniques to reduce cogging torque
by controlling energy variation in permanent magnet
motors,” IEEE Trans. Magn., vol. 37, no. 4, pp. 28062809,
Jul. 2001.

[18] M. R. Dubois, H. Polinder, and J. A. Ferreira, “Magnet
shaping for minimal magnet volume in machines,” IEEE
Trans. Magn., vol. 38, no. 5, pp. 29852987, Sep. 2002.

[19] Hsing-Cheng Yu, Bo-Syun Yu, Jen-te Yu, and Cheng-Kai
Lin, “A Dual Notched Design of Radial-Flux Permanent
Magnet Motors with Low Cogging Torque and Rare Earth
Material,” IEEE Trans. Magn., vol. 50, no. 11, Nov. 2014.

[20] W. Fei, P. C. K. Luk, J. X. Shen, B. Xia, and Y.Wang,
“Permanent-magnet flux-switching integrated starter
generator with different rotor configurations for cogging
torque and torque ripple mitigations,” IEEE Trans. Ind.
Appl., vol. 47, no. 3, pp. 12471256, May/Jun. 2011.

[21] Z. Q. Zhu and D. Howe, “Influence of design parameters on
cogging torque in permanent magnet machines,” IEEE
Trans. Energy Convers., vol. 15, no. 4, pp. 407412, Dec.

[22] W. Fei and P. C. K. Luk, “A new technique of cogging
torque suppression in direct-drive permanent-magnet
brushless machines,” IEEE Trans. Ind. Appl., vol. 46, no. 4,
pp. 13321340, Jul./Aug. 2009.

[23] N. Bianchi and S. Bolognani, “Design techniques for
reducing the cogging torque in surface-mounted PM
motors,” IEEE Trans. Ind. Appl., vol. 38, no. 5, pp. 1259
1265, Sep./Oct. 2002.

[24] T. Li and G. Slemon, “Reduction of cogging torque in
permanent magnet motors,” IEEE Trans. Magn., vol. 24, no.
6, pp. 29012903, Nov. 1988.

[25] Y. Yang, X. Wang, R. Zhang, T. Ding, and R. Tang, “The
optimization of pole-arc coefficient to reduce cogging
torque in surface-mounted permanent magnet motors,”
IEEE Trans. Magn., vol. 42, no. 4, pp. 11351138, Apr.

[26] B. Ackermann, J. H. H. Janssen, R. Sotteck, and R. I. van
Steen, “New technique for reducing cogging torque in a
class of brushless DC motors,” Proc. IEEElectr. Power
Appl., vol. 139, no. 4, pp. 315320, Jul. 1992.

[27] X. Jiang, J. Xing, Y. Li, and Y. Lu, “Theoretical and
simulation analysis of influences of stator tooth width on
cogging torque of BLDC motors,” IEEE Trans. Magn., vol.
45, no. 10, pp. 46014604, Oct. 2009.

[28] L.
Petkovska, P. Lefley, G. V. Cvetkovski, “Design
techniques for cogging torque reduction in a fractional-slot
PMBLDC motor,”
COMPEL-The international journal for
computation and mathematics in electrical and electronic
, vol. 39, no. 3, May 2020.

[29] Zhu,Z.Q., Ruangsinchaiwanich, S., Schofield, N., Howe, D.,
“Reduction of cogging torque in interior-magnet brushless
machines,” IEEE Trans. Magn., vol. 39, no. 5, pp. 3238-
3240, Sept. 2003.

[30] Sun-Kwon Lee, Gyu-Hong Kang, Jin Hur, Byoung-Woo
Kim, “Stator and rotor shape designs of interior permanent
magnet type brushless DC motor for reducing torque
fluctuation,” IEEE Trans. Magn., vol.48, no.11,
pp.4662,4665, Nov. 2012.

[31] Ki-Chan Kim, “A novel method for minimization of
cogging torque and torque ripple for interior permanent
magnet synchronous motor,” IEEE Trans. Magn., vol. 50,
no. 2, pp. 793-796, Feb. 2014
[32] A. N. Patel, B. N. Suthar, “Double layer magnet design
technique for cogging torque reduction of dual rotor single
stator axial flux brushless DC motor
,” Iranian Journal of
Electrical and Electronic Engineering (IJEEE), vol. 16, no.
1, pp. 58-65, Mar. 2020.

[33] D. C. Hanselman, Brushless Permanent Magnet Motor
Design, 2nd ed. Cranston, RI, USA: The Writers’ Collective,