Using of a three-phase four-switch inverter equipped with a variable index PWM to improve the power quality of a wind power plant

Alireza Hosseinpour1,†, and Reza Ghazi2

1 Department of Electrical and Computer Engineering, University of Zabol, Zabol, Iran
2 Department of Electrical and Computer Engineering, Ferdowsi university of Mashhad, Mashhad, Iran

Harmonic reduction is an essential issue in a grid-connected variable-speed wind energy conversion system to decrease the electrical losses of the system and improve the power quality. In this paper, a new Shunt Active Filter (SAF) based on a three-phase four-switch inverter is used to improve the output current harmonics of the wind energy conversion system. The SAF contains three parts: identification, modulation, and inverter. In the proposed filter, an identification algorithm, which is not sensitive to the input source harmonic, is used to cancel out most harmonics impact. Moreover, a modified modulation technique based on the identification of the output signal is utilized. In the previous active filters, a three-phase six-switch inverter has often been used; however, in the proposed SAF, the number of switches is decreased to four in order to decrease the inverter losses. Simulation results confirm the superior performances of the proposed active filter versus the prior one for a wind energy conversion system.

I. INTRODUCTION

With the evolution of wind energy conversion systems (WECS) over the last decade, many different control methods have been developed. The control methods developed for WECS are usually divided into two major categories: constant-speed and variable-speed methods [1]. In constant-speed turbines, there is no control over the speed of the turbine shaft. The constant-speed control is an easy, low-cost and more reliable method; however, it has some disadvantages such as the lack of maximum power tracking and reactive power control and higher mechanical stress. In recent years, modern wind turbines have used the variable-speed control to keep the generator torque almost constant in the presence of wind speed fluctuations and these fluctuations are simulated by changes in generator speed [2]. The variable-speed method brings the following advantages [3]:

- maximum power tracking to harness the highest possible energy from the wind,
- lower mechanical stress,
- less variations in electrical power, and
- reduced acoustical noise at lower wind speeds.

The constant-speed systems rarely include a Power Electronic (PE) converter, except for the compensation of reactive power, while a PE converter plays an important role in modern WECS with the variable-speed control method. The use of the PE converter in variable-speed structures increases the cost and electrical losses [2].

In addition, due to their nonlinear profile and switching action, PE converters are the main source of harmonics in the

\footnotesize{†Corresponding Author: a.hoseinpour@uoz.ac.ir
Tel: +98-9153409088, University of Zabol
Faculty of Electrical and Computer Engineering, University of Zabol, Zabol, Iran}
grid that reduce the power quality. In the past, a passive filter was used to reduce PE harmonics. In this kind of filter, the undesired harmonics are canceled out by adjusting passive element values, i.e., the values of inductors and capacitors. The main drawback of passive filters is that they create resonance frequencies that correspond with the system impedance at a frequency below the tuned frequency, which causes current magnification; therefore, it would be less efficient in the reduction of harmonics [4]. To solve this problem, the idea of using an active filter was proposed [5]. In this type of filter, system signals are measured and accordingly a shunt current or series voltage is injected into the line to reduce the system harmonics. An active filter consists of three parts: identification, modulation, and inverter. Among the issues contained in an active filter, the reference signal production methods play an important role in filter designing because of the effect on speed and precision of the filter response [6-8]. These methods can be divided into time and frequency domain methods [9-12]. The time-domain methods are quicker, but frequency-domain methods are more accurate. The time-domain methods, such as p-q transformer (active and reactive instantaneous power theory), do not exhibit good performance in the presence of harmonic sources. However, frequency-domain methods, which are mainly based on FFT, can overcome the above-mentioned problem.

Sinusoidal pulse width modulation (SPWM) is the most commonly used method of modulation. In this paper, a modified modulation method with a variable index is used that is based on the integral of the output signal from the phase detection stage. Also to decrease the filter losses, an inverter with a reduced number of switches is employed in the filter circuit. In other words, the three-phase four-switch inverter is replaced with a conventional six-switch three-phase inverter.

The proposed energy conversion system includes one inverter. The performance of the inverter is affected by three important parameters: the number of the switches, modulation method, and identification approach. The presented identification algorithm does not affect the harmonics of the source.

A Unified Power Controller for Variable-Speed Fixed-Pitch Wind Energy Conversion System is designed [13] that is composed of a new MPPT controller in low wind speed and a proposed constant-speed and constant-power controller in high wind speed. Moreover, a linear quadratic regulator control active power conditioner is implemented for effective source utilization and voltage regulation in low-power WECS [14]. A boost converter is used in the proposed controller. As well, intelligent control of grid-connected AC–DC–AC converters for a WECS based on T–S fuzzy is performed [15]. Further, reducing harmonic instability and resonance problems in wind farms are solved [16-17].

The present paper uses both four- and six-switch inverters. Furthermore, either sine pulse width modulation (SPWM) or variable index pulse width modulation (VIPWM) is employed. Finally, in addition to the reduction of the current harmonics, the voltage harmonics are reduced. The second one is the lateral advantage. All subjects investigated in this paper are illustrated in Fig.1.

Fig. 1. All subjects investigated in this paper

The use of the VIPWM method in the modulation stage and four-switch inverter are our innovations to improve wind turbine power quality.

Section 2 describes the proposed system. The SAF is explained in Section 3. Section 4 discusses new suggestions to improve system operation. The simulation results are presented in Section 5. Finally, Section 6 provides some conclusions for this research.

II. SYSTEM UNDER STUDY

The literature has talked about four configurations of wind energy conversion systems (WECS) based on the type of electrical generator and PE converter as follows:

- Squirrel cage induction generator with a soft starter
- Wound rotor induction generator with a rotor variable resistance and a soft starter
- Doubly fed induction generator with a power electronic converter
- Permanent magnet synchronous generator (PMSG) with a power electronic converter

Looking from another perspective, wind turbine configurations can be divided into three configurations in terms of the application of PE converters in the WECS: directly connected to the grid without any PE converter, connected via a full-scale PE converter, and connected via a partially-rated PE converter. The generators and PE converter configurations most commonly used in wind turbine systems are discussed below.

The PMSG rotor and stator are connected to the wind turbine and PE converter, respectively.
The reference current production methods are divided into two categories: time domain and frequency domain. Time domain methods, such as the d-q transform (synchronous reference frame) and p-q transform (instantaneous active and reactive power theory) are based on measuring the three-phase transforms, while the frequency domain methods are based on the fast Fourier transformer (FFT). Time domain methods are fast, while frequency domain methods are more accurate [8]. It has been established that the performance of using instantaneous active and reactive power theory is not proper in the presence of harmonic sources [18].

The power can be calculated as follows:

\[
P = 3 \sum_{n=1}^{\infty} \left(V_n^+ I_n^+ \cos(\phi_n^+ - \psi_n^+) + V_n^- I_n^- \cos(\phi_n^- - \psi_n^-) \right)
\]

Eq. (1) can be expressed as follows:

\[
\begin{align*}
P_a &= 3 \sum_{n=1}^{\infty} V_n^+ I_n^+ \cos(\phi_n^+ - \psi_n^+) + V_n^- I_n^- \cos(\phi_n^- - \psi_n^-) \\
q_a &= 3 \sum_{n=1}^{\infty} -V_n^+ I_n^+ \sin(\phi_n^+ - \psi_n^+) + V_n^- I_n^- \cos(\phi_n^- - \psi_n^-) \\
p_{dc} &= 3 \sum_{n=1}^{\infty} V_n^+ I_n^+ \cos(\phi_n^+ - \psi_n^+)
\end{align*}
\]

The superscripts +, - and 0 represent positive, negative and zero sequences, respectively. In addition, V, I, Φ and Ψ are voltage and current, the initial angle of current and voltage, respectively.

Eq. (2) clearly shows that in the dc power transmission from the source to the load, the harmonics are involved. Therefore, the ac power compensation method cannot reduce the line current harmonics. In other words, the voltage harmonics destroy the method operation. In this paper, a frequency method based on the Band Reject Filter (BRF) is adopted so that the line current signal passes through a BRF with a cut-off frequency equal to the power system fundamental frequency. The output signal of the filter contains all the frequencies, except for the fundamental frequency. Therefore, this signal is a suitable reference for the compensation reference. The BRF method needs only the current sensor, while the active and reactive power method needs both current and voltage sensors. Therefore, from the hardware implementation point of view, the BRF method is cheaper.
than the power method. In the next section, two inverter topologies are described.

B. Comparing Three-Phase Four-Switch and Six-Switch Inverter

The structures of a four-switch and a six-switch inverter are depicted in Figs. 5a and 5b, respectively. A four-switch inverter has some advantages over a six-switch inverter, such as reducing the number of switches, interfacing circuits, pulse generator circuits, and low switching loses and real-time computation in the microprocessor. However, increasing the voltage pressure on the circuit insulation and asymmetry outputs are the main disadvantages of four-switch inverters [19]. The unbalancing problem is because phase c is connected to the middle of the dc-link and also it is an uncontrollable out phase. Some solutions to these drawbacks are presented in the next sections. As well as, if this inverter is utilized in the low voltage system, the voltage pressure problem will be solved.

IV. IMPROVING THE FILTER PERFORMANCE

To improve the performance of the SAF, this section presents some suggestions for the inverter configuration and modulation strategy.

A four-switch inverter is employed as a DC/AC converter in the shunt filter. As expressed in the previous section, this replacement has some outstanding advantages, but using four-switch inverters leads to an unbalanced three-phase system. In order to fix this problem, a new method has been used in the following subsection.

Another suggestion to improve filter performance is related to the switching strategy. In the typical PWM modulation, the reference signal is compared with a triangular wave (with constant magnitude). In this paper, a variable magnitude triangular wave proportional to the reference signal is used to decrease the current harmonics. This method is explained in

Section 4.2.

In Ref. [18], SAF is utilized by the six-switch inverter. In contrast, SAF is proposed here by both of the six-switch and four-switch inverter.

A. Symmetry in Three Phase Four Switches Inverter

To solve the unbalanced problem of the four-switch inverter, three reference current signals in the identification stage should be converted into two reference signals [20]. Controlling these two new reference signals results in three-phase symmetry. Since the used inverter is a voltage source inverter, the three-phase current signals should first be converted into a voltage signal. Also, since this filter is connected to the line by an inductor, a capacitor behavior is also needed to cancel out the effectiveness of the inductor. The capacitor voltage is the integral of the capacitor current. Therefore, in order to convert the current signal to a voltage signal and inject the capacitor effect into the line, the current signals are passed through a PI controller to satisfy the above purposes. Then, one of the three voltage signals should be considered as reference and two other signals should be defined according to the reference signal. The best phase for the reference signal is the connected phase to the neutral point in the dc link. In this paper, according to Fig. 5a, phase c is considered as the reference. Consequently, the three signals V_a, V_b, and V_c are converted into two signals, i.e., V_a-V_c and V_b-V_c. The phasor diagram of these signals is shown in Fig. 6. Now, instead of controlling the three vectors V_a, V_b, and V_c by six switches (as a balance system), the two vectors V_a-V_c and V_b-V_c should be controlled by four switches (as same magnitude and 60-degree phase differences). It is proved by the following mathematical equations:

$$v_a = V_o \sin(\omega t)$$

$$v_b = V_o \sin\left(\omega t - \frac{2\pi}{3}\right)$$

$$v_c = V_o \sin\left(\omega t + \frac{2\pi}{3}\right)$$

where V_o is the magnitude of voltage. So, we have

$$v_a - v_c = \sqrt{3}V_o \sin\left(\omega t - \frac{\pi}{3}\right)$$

$$v_b - v_c = \sqrt{3}V_o \sin\left(\omega t - \frac{\pi}{3}\right)$$

The modulation function $[s]$ is determined so as to produce a desired set of voltage:

$$\begin{bmatrix} v_a - v_c \\ v_b - v_c \end{bmatrix} = \begin{bmatrix} S_{01} & S_{02} \\ S_{02} & S_{03} \end{bmatrix} \begin{bmatrix} V \\ -V \end{bmatrix}$$

where V is the half of magnitude of dc-link voltage. The above equation can be solved as follows

$$S_{01} = 0.5[1 + a \sin(\omega t - \frac{\pi}{6})]$$

$$S_{02} = 0.5[1 + a \sin(\omega t - \frac{\pi}{6})]$$

$$S_{03} = 0.5[1 - a \sin(\omega t - \frac{\pi}{6})]$$

$$S_{04} = 0.5[1 - a \sin(\omega t - \frac{\pi}{6})]$$

$$S_{02} + S_{03} = 1$$

$$S_{01} + S_{04} = 1$$
Where \(a = \sqrt{\frac{V_0}{V}} \)

Fig. 6. The desired three-phase voltage vectors and the two resulted vectors

B. Variable Index PWM

In the proposed PWM method, a reference signal is compared with a variable magnitude triangle wave to achieve a better waveform quality which is named Variable Index Pulse Width Modulation (VIPWM) [18]. To generate this signal, an integrator with a reset capability is needed. The operation sequence for phase a (\(T_1, T_3 \) in Fig. 5-a) is as follows:

In the positive half cycle, the integration of the reference signal \(V_a-V_c \) is first calculated. Then, the output of this integrator is compared with the reference signal. When the reference signal is greater than the triangle signal, \(T_1 \) is on and \(T_3 \) is off, and when the two signals are equal, \(T_1 \) is off and \(T_3 \) is on and the integrator is reset. By increasing the integrator output, from zero, \(T_1 \) is turned on and \(T_3 \) is changed to off again. Fig. 7 shows the performance of this method.

Fig. 7. The configuration of circuitry for transistor driving

In the negative half cycle, the reference signal is compared with the integrator output. When the quasi triangle wave is greater, \(T_1 \) is off and \(T_3 \) is on. When this signal is equal to the reference signal, \(T_1 \) is on and \(T_3 \) is off and the integrator is reset. As the output of the integrator decreases from zero, \(T_1 \) is off and \(T_3 \) is on.

Since the triangle wave magnitude is not constant in this method, it is called variable-index modulation. Using this method with a six-switch inverter, a better result is achieved as compared to the SPWM method as explained in Section 6. Figs. 8 and 9 show the difference in waveforms between SPWM and VIPWM.

Fig. 8. (a) SPWM modulation with the fixed index \(m=0.9 \) Triangle and sinusoidal waveforms

Fig. 9. (a) Modulation with variable index Sinusoidal and triangular waveforms

V. SIMULATION

A system with the parameters given in the appendix is considered according to Fig. 4. There are low and high-order harmonics in the output current of the PMSG machine. In order to reduce the harmonics of this current, compensation with three active filters is done as below:

- Shunt Active Filter with a Six-Switch Inverter and SPWM (SAF-SSI-SPWM)
- Shunt Active Filter with a Six-Switch Inverter and VIPWM (SAF-SSI-VIPWM)
- Shunt Active Filter with a Four-Switch Inverter and VIPWM (SAF-FSI-VIPWM)

Finally, the results are compared with the previous cases.

A. Uncompensated system

Considering the system in Fig. 3 with the parameters presented in Table 1, the output current of the PMSG machine is shown in Fig. 10. The current total harmonics distortion (THD) equals 11.42%; according to the IEEE-519 standard, these harmonics should be reduced. For harmonic compensation, the active filter with a six-switch inverter is first used and then a four-switch inverter is employed.

B. Harmonic Reduction Using SAF-SSI-SPWM

An SAF-SSI-SPWM is used to reduce harmonic components in WECS. This device can decrease THD to 2.84%. The compensated line current along with its frequency spectra is shown in Fig.11.
Fig. 9. (b) Modulation with variable index
Logic signal for driving transistor T₁

Fig. 10. (a) PMSG output current curve without SAF
Original current waveform
THD=11.42%

Fig. 10. (b) PMSG output current curve without SAF
Current frequency spectra

Fig. 11. (a) The output current variation diagram of a wind
power station using SAF-SSI-SPWM
Frequency domain

C. Harmonic Reduction Using SAF-SSI-VIPWM
To reduce the current harmonics, the SAF compensation
contains a six-switch inverter used with the VIPWM
modulation. The THD of the modified current wave is
reduced to 1.86% by using this filter as shown in Fig. 12.

Fig. 12. (a) The PMSG output current curve by
SAF-SSI-VIPWM
Original current waveform
THD=1.86%

D. Harmonic Reduction Using SAF-FSI-VIPWM
If the active filter compensation equipped with a four-switch
three-phase inverter (which has symmetry by applying the
mentioned method) and VIPWM modulation are used, the
current waveform will be modified according to Fig. 13. This
filter not only reduces the current harmonics according to the
IEEE-519 standard but also satisfies the symmetry in
three-phase current, which reflects the effectiveness of the
presented method. Reducing the number of switches in an
inverter reduces the capability of the filter. However, this type of inverter satisfies the IEEE-519 harmonics standard. The four-switch inverter has other advantages that are already explained in previous sections. Also, the asymmetry problem is approximately solved by using this inverter.

Fig. 13. (a) The output current variation diagram of a wind power station using SAF-FSI-VIPWM

Time domain

THD=3.12%

Fig. 13. (b) The output current variation diagram of a wind power station using SAF-FSI-VIPWM

Frequency domain

E. Additional Advantages

The main goal in SAF is to reduce current harmonics, but the proposed filter has some other additional advantages. One is the reduction of voltage harmonics (in addition to reducing the harmonic current) in the mentioned application. Although this filter cannot satisfy the IEEE-519 standard in voltage harmonics reduction, it can be considered as a minor advantage. The voltage variation diagram in the uncompensated system is illustrated in Fig. 14 which has 28.9% harmonics.

Fig. 14. (a) The PMSG output voltage before compensation

Original current waveform

If an SAF-SSI-SPWM is used, the THD decreases to 21.4% as shown in Fig. 15. The use of a six-switch inverter and VIPWM modulation leads to a 20.6% reduction of voltage harmonics, while the SAF-FSI-VIPWM can reduce these harmonics to 22.78%. Figs 16 and 17 represent the compensated voltages with the novel modulation strategy using six- and four-switch inverters.

It is worth mentioning that Ref. [3] shows that a six-switch inverter with SPWM modulation reduces the voltage and current harmonics to 20.77% and 2.6%, respectively. Comparing these results with the results of SAF-SSI-VIPWM shows the superiority of this method for modulation. Moreover, the SAF-FSI-VIPWM not only satisfies the IEEE-519 standard but it is also appreciated from economic aspects.

Fig. 14. (b) The PMSG output voltage before compensation

Current frequency spectra

Fig. 15. (a) The output voltage variation diagram of a wind power station using SAF-SSI-SPWM

Time domain

THD=21.40%

Fig. 15. (b) The output voltage variation diagram of a wind power station using SAF-SSI-SPWM

Frequency domain
Compare all SAFs
The results of applying different SAFs are shown in Table. 1. Moreover, The effect of the two types of inverters used in this manuscript are shown in this Table. As previously mentioned, VIPWM and Inverter six-switch has better results. However, FSI either includes economic consideration or satisfies IEEE-519 standard.

Table. I
The Results Of Applying Different Safs

<table>
<thead>
<tr>
<th>Type of compensator</th>
<th>Inverter (number of switches)</th>
<th>Modulation</th>
<th>Current’s THD</th>
<th>Voltage’s THD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uncompensated</td>
<td>-</td>
<td>-</td>
<td>11.42</td>
<td>28.90</td>
</tr>
<tr>
<td>SAF-SSI-SPWM M</td>
<td>6</td>
<td>SPW M</td>
<td>2.84%</td>
<td>21.4%</td>
</tr>
<tr>
<td>SAF-SSI-VIPWM M</td>
<td>6</td>
<td>VIP WM</td>
<td>1.86%</td>
<td>20.60%</td>
</tr>
<tr>
<td>SAF-FSI-VIPWM M</td>
<td>4</td>
<td>VIP WM</td>
<td>3.12%</td>
<td>22.78%</td>
</tr>
</tbody>
</table>

VI. CONCLUSION
In this paper, a new shunt active filter is proposed to reduce the current harmonics of a wind power energy conversion. In the identification box of this filter, a method is used which is not sensitive to non-sinusoidal sources. A new modulation method with the variable index is used which is based on the integration of the output signal of the identification box. This method is more useful than the constant index in reducing the current and voltage harmonics. In the inverter side of the filter, instead of a six-switch inverter, a four-switch inverter is used which has a lower switching loss. Decreasing the number of switches in the inverter reduces the capability of the filter, but it can be justified either by the IEEE-519 harmonic standard or from the economic aspects. In addition to reducing current harmonics, improving the voltage waveform quality is an additional advantage of using the proposed filter.
APPENDIX

Wind turbine and PE converter parameters are presented in table II.a. Moreover, active filter parameters are presented in table II.b

Table II.a
Wind Turbine And PE Converter Parameters

<table>
<thead>
<tr>
<th>parameter</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>20kw</td>
</tr>
<tr>
<td>Vm</td>
<td>12m/s</td>
</tr>
<tr>
<td>Jt</td>
<td>1500</td>
</tr>
<tr>
<td>Ra</td>
<td>0.432Ω</td>
</tr>
<tr>
<td>La</td>
<td>5.24mH</td>
</tr>
<tr>
<td>Lj</td>
<td>5.24mH</td>
</tr>
<tr>
<td>J</td>
<td>1.954</td>
</tr>
<tr>
<td>Cl</td>
<td>5000μF</td>
</tr>
<tr>
<td>RL</td>
<td>6.5Ω</td>
</tr>
<tr>
<td>CF</td>
<td>3.9μF</td>
</tr>
</tbody>
</table>

Table II.b
Active Filter Parameters

<table>
<thead>
<tr>
<th>Gain of PI controller</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time constant of PI controller</td>
<td>0.001</td>
</tr>
<tr>
<td>Center Frequency of band reject filter</td>
<td>60 Hz</td>
</tr>
<tr>
<td>Stopping band of band reject filter</td>
<td>20 Hz</td>
</tr>
</tbody>
</table>

References

[14] Subashini Nallusamy; Dharmalingam Velayutham; Um a Govindarajan "Design and implementation of a linear quadratic regulator controlled active power conditioner for effective source utilisation and voltage regulation in low-power wind energy conversion systems", IET Power Electronics, Vol. 8, Issue. 11, 2015

Alireza Hoseinpour was born in Zabol, Iran in 1985. He received his B.Sc., degree with honors from Sistan and Baluchestan University of Zahedan, Iran in 2007. In 2010 he received his M.Sc degree from Ferdowsi University of Mashhad, Iran, and PhD degree in 2018 from Shiraz University of Technology all in electrical engineering. Following receipt of the PhD degree, he joined University of Zabol, Iran. His main research interests are wind turbine, renewable energy, ac machine drive, four-switch three-phase inverter, power electronic and design of electrical machine.

Reza Ghazi (M’90) was born in Semnan, Iran in 1952. He received his B.Sc., degree (with honors) from Tehran University of Science and Technology, Tehran, Iran in 1976. In 1986 he received his M.Sc degree from Manchester University, Institute of Science and Technology (UMIST) and the Ph.D. degree in 1989 from University of Salford UK, all in electrical engineering. Following receipt of the Ph.D. degree, he joined the faculty of engineering Ferdowsi University of Mashhad, Iran as an Assistant Professor of electrical engineering. He is currently Professor of Electrical Engineering in Ferdowsi University of Mashhad, Iran. His main research interests are reactive power control, FACTS devices, application of power electronic in power systems, distributed generation, restructured power systems control and analysis. He has published over 90 papers in these fields including three books.