Industrial Electronics
Hadi Afsharirad; Fahimeh Sadighi-Amandi; Mohamad Reza Banaei; Sara Misaghi
Abstract
The use of DFIG-DC systems without stator voltage and current sensors has gained attention due to reduced costs and simplified control. However, diode rectifiers in these systems introduce current harmonics, degrading power quality and limiting performance at higher power levels. This study proposes ...
Read More
The use of DFIG-DC systems without stator voltage and current sensors has gained attention due to reduced costs and simplified control. However, diode rectifiers in these systems introduce current harmonics, degrading power quality and limiting performance at higher power levels. This study proposes a new structure for DFIG-DC systems, replacing the conventional two-level inverter with a T-type converter to address these issues.The proposed system uses a T-type converter to enhance voltage levels, reducing current harmonics and improving power quality. It also eliminates stator voltage and current sensors, simplifying the control system and reducing costs. Performance analysis through MATLAB/Simulink simulations demonstrated the effectiveness of the proposed system compared to conventional methods.The proposed DFIG-DC system with a T-type converter offers a cost-effective and efficient solution for reducing current harmonics and improving power quality. Its simplified control system and enhanced performance make it a promising approach for high-power applications in wind energy systems and other industrial uses. These findings highlight the system’s potential for improving reliability and operational efficiency in renewable energy and industrial applications.