Industrial Electronics
Javad Rahmanifard; Saeed Hasanzadeh
Abstract
This paper presents an Enhanced Model-Free Sliding Mode Control (EMFSMC) method tailored for the speed loop of a 12-slot/19-pole yokeless and segmented armature axial flux-switching permanent magnet (12S/19P YASA-AFFSSPM) motor, focusing on robustness against parameter perturbations. Traditional control ...
Read More
This paper presents an Enhanced Model-Free Sliding Mode Control (EMFSMC) method tailored for the speed loop of a 12-slot/19-pole yokeless and segmented armature axial flux-switching permanent magnet (12S/19P YASA-AFFSSPM) motor, focusing on robustness against parameter perturbations. Traditional control techniques, such as Proportional-Integral (PI) control and Model-Free Sliding Mode Control (MFSMC), have shown limitations in handling the motor's nonlinear behavior and susceptibility to disturbances. The proposed EMFSMC algorithm optimizes speed loop performance by establishing a hyperlocal model of the YASA-AFFSSPM motor, which accounts for parameter variations. An improved double-power combinatorial reaching law is developed to enhance convergence rates during the sliding surface approach phase, while an Extended Sliding Mode Disturbance Observer (ESMDO) provides real-time monitoring of unknown disturbances affecting speed control. Simulation results demonstrate that the EMFSMC significantly accelerates the speed response time to approximately 0.015 seconds with minimal overshoot, compared to 0.04 seconds and a 12.5% overshoot with the MFSMC. Additionally, under sudden load conditions, the EMFSMC controller exhibits a speed drop of only 4 rpm, recovering to stability in about 0.01 seconds, while the MFSMC controller experiences a 9 rpm drop with a recovery time of 0.03 seconds. These findings confirm that the EMFSMC enhances the speed response rate and robustness of the speed loop, outperforming traditional control methodologies across various operating conditions.
Power systems
Reza Sedaghati; Mahmoud Reza Shakarami
Abstract
A single-phase distributed generation (DG) sources embedded in three-phase microgrids develop with a fast-paced trend, it is important to make use of suitable power sharing strategies among multiple DGs and utilizing the power generation of these units to the full capacity. This paper presents an innovative ...
Read More
A single-phase distributed generation (DG) sources embedded in three-phase microgrids develop with a fast-paced trend, it is important to make use of suitable power sharing strategies among multiple DGs and utilizing the power generation of these units to the full capacity. This paper presents an innovative sliding mode-based power control strategy for microgrids. The multi-bus microgrid consists of three-phase DG units that are two photovoltaic (PV) array, and three single-phase DG units including PV, battery and fuel cell (FC). The dynamic modeling of all DGs is based on voltage source inverter (VSI). One of the three-phase DGs is responsible for frequency and voltage control, and the other one for current control. The single-phase DGs are controlled based on the three-phase DGs. Finally, the voltage and power control operations are implemented in a per-unit system. The proposed control strategy has a fast response and the ability to trace a reference signal with a low steady-state error compared with the PI controller; moreover, it provides the accurate active and reactive power sharing among energy units under various loading and fault conditions along with robustness against the microgrid parameters. Additionally, the ability to maintain the dc-link voltage and frequency constant is another feature of this controller.