Control
Shoorangiz Shams Shamsabad Farahani; Narges Masoomabadi; Mohammad Reza Jahed-Motlagh
Abstract
Based on the recent Internet advances, congestion control is considered as an important issue and has spurred a significant amount of research. In this study, second-order sliding mode control is used to adjust the average queue length and maintain the closed-loop system performance. The control law ...
Read More
Based on the recent Internet advances, congestion control is considered as an important issue and has spurred a significant amount of research. In this study, second-order sliding mode control is used to adjust the average queue length and maintain the closed-loop system performance. The control law is obtained in two steps. First, the nonlinear state-space form of the network is extracted based on state variables as the average queue length and congestion window size. Then, the proportional-Integrator-derivative and proportional- derivative sliding surface are defined according to the tracking error. Also, in order to avoid chattering, the derivative of the sliding surface is considered and the closed-loop system stability is investigated based on Lyapunov theory. The proposed scheme renders good tracking specifications and closed-loop system robustness. The simulation results show that the proposed methods outperform proportional integral (PI) and proportional integral derivative (PID) schemes. Also, robustness to disturbances increases and chattering and transient response degradation are avoided.