Industrial Electronics
Hamid Radmanesh; Masood Saeidi
Abstract
The AC/DC converter is one of the popular power electronic converters in industrial applications such as in the railway, power supply systems and electric vehicle. In this paper, a three-phase controllable rectifier is considered and its linear model is extracted. Because of MPC controllers benefits, ...
Read More
The AC/DC converter is one of the popular power electronic converters in industrial applications such as in the railway, power supply systems and electric vehicle. In this paper, a three-phase controllable rectifier is considered and its linear model is extracted. Because of MPC controllers benefits, the continuous control set model predictive controller (CCs-MPC) is designed for controlling this rectifier output DC voltage. By considering rectifier dynamic response, the suitable criteria to choice the model predictive controller parameters such as sampling time, prediction horizon and control horizon is proposed. In experimental implantation the computing burden of microcontroller is limit therefore the reaching to optimal and minimum complexity in algorithms implantation is vital problem. In other words by using these proposed criteria for selection of sample time, prediction and control horizon the tradeoff between computational burden, system performance and dynamic stability is made. When using designed MPC controller, the rectifier and grid performance such as total harmonic distribution (THD), power factor (PF) and output voltage ripple have acceptable value. This controller can eliminated the effect of heavy load change on rectifier performance which is very common problem in indusial system. Also, this controller stability guaranteed is checked by using the dual-mode method. The simulation results are validated by using MATLAB software and showing the designed controller performance.
Industrial Electronics
Mohsen Ehsani; Masood Saeidi; Hamid Radmanesh; Adib Abrishamifar
Abstract
In this paper, the linear state-space model of the multi-input DC-DC boost converter is obtained and based on, a linear SISO model is calculated. Model predictive control (MPC) offers a novel method of designing in the power electronic converters. The application to DC-DC converters offers real benefits ...
Read More
In this paper, the linear state-space model of the multi-input DC-DC boost converter is obtained and based on, a linear SISO model is calculated. Model predictive control (MPC) offers a novel method of designing in the power electronic converters. The application to DC-DC converters offers real benefits because of having simple tuning technique and analytical guaranteed stability. The weakness of this converter is non minimum phase behavior. One of the methods of implementation MPC controller is Generalized Predictive Control (GPC) which is compatible with non-minimum phase systems but due to simple implementation, using of the linear controller is more popular in power electronics control system. GPC has some advantage such as fast dynamic and robustness in the nonlinear system however main advantage of linear controllers is its low steady state error. The main idea of this paper is the investigation performance of GPC and linear controller in the multi-input DC-DC boost converter and camper with PI controller in term of dynamic, steady-state error, and robustness and run time in a microcontroller. The resulting of this comparison is critically assessed in simulation and algorithms ruining time has been compared in microcontroller hardware.