Industrial Electronics
Shima Tavakoli; Zahra Nasiri-Gheidari
Abstract
Static eccentricity (SE) is an intrinsic fault existing in both faulty and newly made resolvers. The late diagnosis of SE causes severe damages to mechanical parts of resolver such as bearings, cores and even windings, in addition to wrong position estimation. However, so far fault diagnosis has not ...
Read More
Static eccentricity (SE) is an intrinsic fault existing in both faulty and newly made resolvers. The late diagnosis of SE causes severe damages to mechanical parts of resolver such as bearings, cores and even windings, in addition to wrong position estimation. However, so far fault diagnosis has not been investigated for any Resolver. In this paper, SE fault diagnosis is discussed for a sample wound-rotor (WR) cylindrical resolver. Time stepping finite element method (TSFEM) is used to simulate the resolver, and its accuracy is validated by a comparison between the results of simulation and experimental tests. Then, some fault indices are defined to diagnose the SE fault occurrence, and its magnitude is predicted using Fast Fourier transform (FFT). Finally, to ensure that indices are unique, the performance of the studied resolver is evaluated under other types of faults including Dynamic Eccentricity (DE) and Short-circuit (SC) that may excite the same indices.
Power systems
Zahra Nasiri-Gheidari; Mehrage Ghods; Hashem Oraee
Abstract
In this paper no-load and full-load performance of Permanent Magnet Vernier Generators (PMVGs) is investigated in fully-aligned condition and under different types of mechanical faults. The studied mechanical faults are Static Eccentricity (SE), Dynamic Eccentricity (DE), Inclined Rotor (IR), and Run-out ...
Read More
In this paper no-load and full-load performance of Permanent Magnet Vernier Generators (PMVGs) is investigated in fully-aligned condition and under different types of mechanical faults. The studied mechanical faults are Static Eccentricity (SE), Dynamic Eccentricity (DE), Inclined Rotor (IR), and Run-out (RO). Furthermore, an analytical model is developed to calculate the permeance of the air-gap and the induced voltages in the health machine and under studied mechanical faults. Then, 2-D and 3-D time stepping finite element method is utilized for performance evaluation of the generator. Some discussions are made on the quality of induced voltages, torque ripples, variations of axial and radial forces and the output power of the generator under the mechanical faults considering resistive, inductive and capacitive loads connected to the terminals of the generator. Finally, the performance of an outer rotor conventional permanent magnet generator (CPMG), considering constant dimensions, constant PM, copper and iron usage is compared with the studied PMVG. The performance of two generators is studied in fully-aligned condition as well as under SE and DE.