Optimization
Hamed Maleki; Mohammad Sadegh Sepasian; Mohammad Reza Aghamohammadi; Mousa Marzband
Abstract
This study investigates the optimal design configuration of a hydrogen refueling station located in southern Iran, focusing on the integration of renewable energy sources and seawater desalination technology to achieve self-sufficiency. The station integrates various components, including photovoltaic ...
Read More
This study investigates the optimal design configuration of a hydrogen refueling station located in southern Iran, focusing on the integration of renewable energy sources and seawater desalination technology to achieve self-sufficiency. The station integrates various components, including photovoltaic panels, fuel cells, desalination units, natural gas and power-to-hydrogen conversion systems, and storage facilities for water and hydrogen. The primary goals are to achieve an independent power supply from renewable sources and an autonomous water supply through seawater desalination. To determine the most cost-effective configuration, a Mixed Integer Linear Programming (MILP) model is developed, taking into account the water and power consumption of each component. The objective is to minimize the Net Present Cost (NPC) of investment, maintenance, and operation. The model is implemented and solved using the CBC solver within the PYOMO environment. The study's findings reveal that converting natural gas to hydrogen is more economically viable than power-to-hydrogen conversion, with the former accounting for more than 95% of the hydrogen produced. The power demand is effectively met by a combination of photovoltaic systems, fuel cells, and hydrogen storage. Moreover, the study highlights the benefits of integrating water and hydrogen storage systems, which optimizes the utilization of photovoltaic energy. Excess energy generated by the photovoltaic panels is utilized for seawater desalination and the production of green hydrogen