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The main challenge in associate islanded Micro grid (MG) is the frequency stability due to the inherent low-inertia 
feature of distributed energy resources. That is why, energy storage devices, are utilized in MGs as the promising 
sources for grid short-term frequency regulation. Though energy storage devices, improve the dynamic operation of the 
load-frequency control (LFC) system, these devices increase system costs. Moreover, the modification or uncertainty of 
the system parameters will significantly degrade the performance of the conventional LFC system. This article proposes 
the execution of rotating-mass-based virtual inertia in Double-Fed Induction Generator (DFIG) to support the first 
frequency control associated an adaptive Neuro-Fuzzy inference System (ANFIS) controller, as secondary frequency 
control. The simulation conclusions illustrate that the suggested control scheme ameliorate the dynamic operation of 
the LFC system and also the studied islanded MG remains stable, despite severe load variation and parametric 
uncertainties. 
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I. INTRODUCTION  

In recent decades, the use of renewable energy has 
enhanced, the main cause of which is environmental pollution 
and economic aspects [1]. Wind energy has become one in 
all the most necessary renewable energies and the largest 
view in terms of new technologies and economical. Due to 
the variable speed of wind, for maximum efficiency at 
different speeds, the turbine with variable speed is required 
[2,3]. Therefore, the wind turbine equipped with Double-Fed 
Induction Generators (DFIGs) are widely utilized in Wind 
Energy Conversion System (WECS) [4]. There 
is generally no inertia response between the DFIG rotor 
speed and the frequency of the system. There is 
additionally no primary frequency regulation and only the 
maximum power point tracking (MPPT) method is used in 
DFIG power control system [5]. Therefore, with high wind 
power penetration, inevitably there are major challenges in 
frequency regulation. In addition, the main challenge in an 
islanded Micro grid (MG) is the frequency stability due to the 

inherent low-inertia feature of Distributed Energy Resources 
(DERs). That is why, energy storage equipment, because of 
their rapid response time and ability to charge and discharge 
efficiently, are used in MGs as the promising sources for 
grid short-term frequency regulation [6]. Although energy 
storage instruments, like batteries, flywheels, and 
super-capacitors, improve the dynamic operation of the 
Load-Frequency control (LFC) system, these devices, along 
with their respective inverter, increase system costs. 

Wind turbines participation in frequency adjustment is the 
idea to make better the dynamic frequency respond 
characteristics of power systems. In [7-15], by implementing 
virtual inertia in DFIG control system, the dynamic behavior 
of the MG is improved. In [7, 8], the primary frequency 
control strategy, virtual inertia and blade angle control are 
used in DFIG to reduce the frequency variation. In [9, 10], 
the super-capacitor, as the source of inertia, has been used. In 
[11], using double-layer capacitor energy storage, dynamic 
stability is improved. These methods also, due to the use of 
additional equipment, is costly. In [12-15], the inertia of the 
wind turbine rotating mass is used to implement virtual 
inertia in DFIG control system. Although implementation of 
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virtual inertia with rotating masses does not require additional 
equipment and costs, its implementation is subject to some 
limitations. In this method, the virtual inertia appertain to the 
wind speed, and therefore, its value is completely variable 
and stochastic. Another limitation to the use of 
rotating-mass-based virtual inertia is a thermal constraint. At 
high wind speeds, frequency deviation leads to the additional 
power generation, due to the virtual inertia control loop, and 
consequently, the temperature of the DFIG rises, which may 
be more than allowed [13]. Moreover, in this paper, it is 
shown that the change or uncertainty of the system 
parameters, such as droop factor, can considerably degrade 
the performance of the LFC system. 

Contrariwise, in the conventional LFC systems, the PI or 
PID controllers are usually used as secondary frequency 
control. Although these controllers have such advantages as 
simplicity and easy implementation, they are mostly used for 
systems with simple and constant configuration. Therefore, 
because the structure and configuration of micro grids are 
constantly changing and there are many uncertainties, 
conventional controllers with constant parameters cannot be 
used. [15]. Also, Most of the linearization methods used to 
control the frequency increase the system's order, which 
makes the micro grid more complicated [16]. 

Fuzzy logic and neural controllers also have been 
developed in many control applications to intricate models 
[17]. The fuzzy is based on the rules "if and then", which we 
get these rules from the system description. Since we do not 
have much information about the behavior of most systems, 
conclusion from these types of systems is difficult and neural 
controllers need a lot of time for training. Combined methods 
are among the methods developed to control complex 
systems in recent years. One of these combined algorithms is 
Adaptive Neuro-Fuzzy Inference System (ANFIS). An 
ANFIS benefits from both fuzzy and neural control systems. 
In this paper, instead of the conventional PID controller, an 
ANFIS-based controller is proposed to use as secondary 
frequency control while the rotating-mass-based virtual 
inertia is implemented to support the primary frequency 
control. 

So far, several intelligent controllers have been explored as 
complementary frequency control of micro grids. In [6], 
frequency control has been improved using the fuzzy-PSO 
method with the amount of electric power generated by wind 
turbines. In [18], frequency control has been improved using 
the HPSO algorithm decentralized. In [19] using fuzzy logic, 
control for the micro grid frequency is done with high 
penetration of wind turbines. In [20], frequency control is 
performed using an on-line method that detects frequency 
variations using PSO and fuzzy algorithms. But until now, 
research on the use of ANFIS-based controller as 
complementary frequency control of the micro grid has not 
been reported when virtual inertia is involved in the LFC 
system. 

The rest of this study is segmented as follows: The second 
part describes the model of the micro grid studied. In Section 
3, the implementation of rotating-mass-based virtual inertia in 

DFIG are explained. Fuzzy PID and ANFIS-based controllers’ 
design are addressed in part 4. Results and simulations of 
different controllers and their comparison are presented in 
part 5. Eventually, the general conclusion is summarized in 
part 6. 

II.  THE  STUDIED MG  STRUCTURE  

Figure 1 shows an islanded micro grid containing various 
DGs. This system includes wind turbine, solar cell, diesel 
generator, fuel cell, battery and flywheel storage devices. The 
parameters of the studied MG are also presented in Table 1. 

In the studied MG, as shown in Fig. 1, diesel generator 
consists of the primary and complementary frequency control 
loop Also, a complementary frequency control loop; control 
the fuel cell output power. Droop control is used for the 
primary frequency control and the storage devices are used 
for supporting the primary frequency control. Different 
controllers are designed for the secondary frequency control 
loops. These controllers are the classical PID controller, PID 
fuzzy and proposed ANFIS-based controller. 
 

TABLE I . MICRO GRID PARAMETERS 

 
TABLE II  . NOMINAL POWER OF DG UNITS AND LOAD 

Load (kW) Rated Power (kW) 

430 

100  WTG 

30  PV panel 

70  FC 

160  DEG 

45  FESS 

45  BESS 

 

Value Parameter  Value  Parameter  

0.08  � � � � �  0.015  D(Pu/Hz)  

0.4  � � � � �  0.1667  2H(Pu s)  

0.004  � � � 	 � � �  0.1  � 
��� � � �  

0.04  � 
� � � �  0.1  � ���� � � �  

3  R(Hz/Pu)  0.26  � 
� � � �  
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Fig.1. schematic block diagram of the studied islanded MG. 

 

III.  IMPLEMENTING VIRTUAL INERTIA  

In a DFIG, stator directly and rotor via two converters 
connected to the power system. It produces the highest wind 
power using a converter that is located on the rotor's side and 
it adjusts the stator voltage.  DC voltage can be adjusted 
using the network side converter. Wind turbines such as 
synchronous generators have high inertia, which this energy 
is stored as kinetic in its axis. However, this energy cannot 
participate in frequency adjusting due to the decoupled 
mechanical and electrical power controllers.  

The maximum power that can be obtained from a wind 
turbine, Pm, opt can be expressed  

(1) 3
,mopt opt mP K= w��

Where � m is DFIG rotational speed and Kopt is fixed 
when the angle of the turbine blade is constant. 

The input mechanical and the output electrical powers (Pm, 
Pe) are related to each other as the following  

(2) 
� � � � � � � � �

� � �

��
�

In this equation, J is the moment of inertia of the rotating 
mass connected to the rotor.  

In synchronous generators, in order to control the grid 
frequency, a speed governor controls the input mechanical 
power. As a result, the generator output power depends on the 
input mechanical power and a derivative term that introduces 
the rotating mass inertia. In a DFIG, where Pm is 
undispatchable, the output electrical power is controlled 
directly. Therefore, the grid frequency variation and the 
rotating mass inertia do not affect the amount of generator 
output power. Thus, the DFIG inertia does not participate in 
frequency tuning.  
 

If equation (2) is written in the per unit form, it is as 
follows: 

(3) 2 m
m e m

d
P P H

dt
- =

w
w��

In this equation, H is the DFIG inertia constant and Pe is 
equal to Pm, opt. After linearization around the basis rotational 
speed � ��  (3) can be represented as: 

(4) �� � � �� � � � � � � �
� �� �

��
�

Where, 
(5) 2

03e opt m mP K w wD = D��

To implement virtual inertia, the output electrical power 
control is changed in such a way that, moreover to tracking 
the maximum power point, it also responds to system 
frequency variations. Therefore, the above equation can be 
modified as follows: 

(6) 2
0 03 ( )e opt m m mP K H snw w w wD = D - D��

In the above equation, the frequency of the grid is 
represented by �  and Hv(s) is the transfer function of virtual 
inertia, which represented as follows [22]: 

(7) 

1 2

( )
( 1)( 1)

M s
H s

s s
n

n t t
=

+ +
��

In the above transfer function, � �  is the virtual inertial 

constant, and 1t and 2t  are the virtual inertia time 

constants. At low frequencies, Hv(s) behaves similarly to a 
derivative. 

By replacing (6) in (4) we can write: 

(8) �� � �  ! "#� � � �
$ � � � � � � � � � � � � ��

%� � � � � �� � � &&&&&&&&�

Using the above equation �� �  is obtained according to 
the equation (9). 

(9) �� � �
'

� � � �� � % ! "#� � ��
$ ( � �

%
� � � � � � ��

� � � � � � % ! "#� � � �
$ �� &&&&&&&&&&&&�

By replacing (9) in (6) we will have: 

�� � �
) * +,- . / 0

$1� 2 ) * +,- . / 0
( � � �

$1 1 3 � � � 4 / 0�

$1� 2 ) * +,- . / 0
��           (10) ��

Based on (10), �� �  can be changed as a function of (� �  
and�� . Therefore, the grid frequency variation and the 
virtual inertia affect the amount of DFIG output power. By 

setting � �  and consequently Hv(s) to zero, wind 
generator without virtual inertia can be represented. The 
electrical output of DFIG with virtual inertia can be 
expressed as follows: 
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Fig.2. the schematic block diagram of the studied islanded MG 
with virtual inertia.
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B. Scenario 2: Step load variation with parametric 

uncertainties 
In this case, first, each parameter is varied separately, and 

then the effect of simultaneously changes in the system 
parameters and modelling errors are considered as a worst 
case to evaluate the controllers’ robustness. Fig. 11 to Fig. 14 
show the effect of parameters change on the frequency 
regulation when a conventional PID performs the secondary 
frequency control. Fig. 11 illustrates the MG frequency 
response considering Tg and Tt variations when � �  is equal 
to 3. As one can see the augmentation of the governor and 
turbine time constant degrade the MG dynamic response. The 
effect of 50% variation in H and D are presented in Fig. 12 
and 13 for � �  equal to 3 and 0.5, respectively. These figures 
show that the reduction of load sensitivity coefficient 
degrades noticeably the MG dynamic response when � �  is 
equal to 0.5. In addition, due to the small amount of the 
parameter H, its variations have little effect on the MG 
frequency's behavior. Figure 14 depicts the effect of 50% 
variation in R, TFESS and TBESS on the frequency regulation. 
This figure shows that the reduction of R decreases the MG 
stability and increasing of R leads to more frequency 
deviation. Furthermore, due to the small amount of the 
parameters TFESS and TBESS, their variations have little effect 
on the frequency regulation. 

Table 5 shows the intended system parameters variations 
and modelling errors as a worst case. The simulation results 
are presented in Fig. 15 and Fig. 16 for this case. As Fig. 15 
shown the studied MG become unstable when the controller 
is conventional PID.  Zoomed results are illustrated in Fig. 
16. As one can see, in this case, with the Fuzzy-PID 
controller the studied MG has poor stability. Instead, the 
proposed control strategy (ANFIS-based controller with 
implemented virtual inertia) regulates properly the MG 
frequency and its performance is not much affected by the 
parameters changes. 
 

TABLE IV .  PID CONTROLLER PARAMETERS 

PK  IK  DK  

2.3  15.19  0.2  

 

 
Fig. 9. Impact of virtual inertia on the short-period frequency 
regulation. 
 

 
Fig. 10. Performance of different controllers on the short-period 
frequency adjustment in the attendance of virtual inertia. 

 

 
Fig. 11. MG frequency response considering � � and � � variations. 

 
Fig. 12. MG frequency response considering H and D variations 
for� ? �   
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Fig. 13. MG frequency response considering H and D variations 
for � ? � @AB 
 

 
Fig. 14. MG frequency response considering R, TFESS and 
TBESS variations for� ? �  .  

 

 
Fig. 15. MG frequency response considering the system 
parameters variations and modelling errors shown in table 5. 
 

 
Fig. 16. Zoomed MG frequency response. 

C. Scenario 3: Step load variation with parametric 
uncertainties without energy storage equipment 

In this scenario, the conditions are the same as those in the 
previous scenario. Nevertheless, in this scenario; energy 
storage equipment has been removed from the system under 
study. As can be seen in Figure 17 removing energy storage 
equipment leads to performance degradation of the 
conventional PID and Fuzzy PID controllers, where both 
controllers become unstable. However, using the suggested 
control scheme, the system frequency is effectively regulated 
even without energy storage equipment. Furthermore, Fig. 18, 
which compares the effectiveness of Fuzzy PID and 
ANFIS-based controllers in this scenario, depicts that the 
system frequency response remains approximately unchanged 
with and without energy storage equipment. Fig. 19 illustrates 

the performance of the ANFIS-based controller versus M n

under such conditions. This figure shows that the 
performance of the ANFIS-based controller is acceptable 

even with smallM 2n = , but M 1n = leads to MG frequency 

instability. 
 

VI.  CONCLUSION 

In this paper, to regulate the frequency of studied islanded 
MG a control scheme is proposed. The proposed control 
strategy consists of an ANFIS-based controller as secondary 
frequency control and a rotating-mass-based virtual inertia, 
implemented in DFIG control system, as an inherent energy 
storage system. The simulation conclusions demonstrate that 
using the suggested control strategy the frequency of studied 
MG can effectively regulate despite removing energy storage 
equipment, severe system parameters changes and modelling 
error. three different controllers are implemented in order to 
achieve good frequency regulation/tracking regardless of the 
presence of disturbances and parameter variations. In practice, 
simple PI&PID controllers are commonly used that provide a 
poor performance in the presence of serious disturbances and 
The fuzzy controller is heavily dependent on membership 
functions. eventually the results reveal that the ANFIS-based 
controller outperforms other controllers in all aspects such as 
overshoot, undershoot, steady state error, rise time and 
settling time. 
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Fig. 17. MG frequency response without energy storage 
equipment and considering the parameters changes. 

 
Fig. 18. Zoomed MG frequency response without energy storage 
equipment and considering the parameters changes. 

 
Fig. 19. Performance of ANFIS-based controller versus 
� ? without energy storage equipment and considering the 
parameters changes. 
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