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In this paper, a full-order sliding mode controller, based on adaptive neuro-fuzzy inference system (ANFIS) as 

approximator, is proposed for controlling nonlinear chaotic systems in presence of uncertainty. At first, the full-order 

sliding mode controller is designed for the system in the absence of uncertainty such that the system states are converged 

to the sliding surface. Then, adding uncertainty to system equations, convergence of the method is illustrated using 

simulations. By assuming that a part of the system dynamics is uncertain and only input-output data is partly available, 

ANFIS is used in off-line mode to approximate the uncertain dynamics of the system based on input-output data. The 

proposed method can effectively solve the problems of the sliding-based methods, such as chattering phenomenon and 

singularity. The simulation results, applied to the well-known nonlinear systems namely permanent magnet synchronous 

motor (Asus) and plasma torch systems when they behave in chaotic mode, demonstrate effectiveness and fidelity of the 

proposed control method. 
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I. INTRODUCTION 

Chaos phenomenon can be observed in behavior of lots of 

nonlinear systems with certain dynamics and many natural 

and artificial systems with this property are being explored 

gradually. Among these systems, one can refer to 

identification of chaotic model in economic transactions [1], 

materials and biotechnology [2], oscillatory circuit [3] and so 

on. These systems can be expressed by ordinary or partial 

differential equations including time-independent or 

time-dependent, discrete-time or continuous-time and energy 

storage or waste systems [4]. 

Some hyperchaotic systems have also been introduced in 

literature. For example, one can refer to hyperchaotic 

complex Lorenz system [5], Wang and Chen systems [6] and 

integrated hyperchaotic system. The most underlying feature 

of such chaotic systems is their sensitiveness to change in 

initial conditions. This means that change in system behavior 

is made per slight change in initial conditions of chaotic 

system [7]. In general case, a continuous system with 

nonlinear structure, certain dynamics and long-term 

unpredictable behavior can be chaotic by changing some 

parameters [8]. 

Chaos control has attracted attention of many scholars over 

the decades and different methods have been proposed for 

controlling chaotic behaviors. The first group includes control 

methods use internal features of chaotic system [9] and 

second group controls chaos utilize control techniques. One 

of the most effective methods for chaos control is sliding 

mode control (SMC) method. Conventional SMC has some 

problems such as slow convergence, singularity and 

chattering [10]. 

One of the effective SMC methods to control chaotic 

systems is integral SMC (ISMC) in which proportional 

integral sliding surface is used to determine general stability 

for desired equilibrium point. The advantage of using the 

integral sliding surface is that in addition to providing zero 

error convergence, integral of error also becomes zero. This 

can decrease steady state error and also increases the system 

stability threshold [11]. Other sliding methods such as 

high-order SMC (HOSMC), terminal SMC (TSMC) and 

non-singular SMC (NSMC) methods have been also 

proposed for chaotic systems [12]-[13]. These methods 

provide partly some advantages such as reduced chattering, 

non-singularity and finite-time convergence. However, the 
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main problem of the existing SMC-based methods is that 

because of using discrete control input, chattering 

phenomenon occurs and some additional methods are needed 

to meet the problem. In this study, full-order sliding model 

control (FOSMC) has been applied to control the chaos. This 

method provides more general solution in which the 

singularity and chattering problems have been solved to high 

extent. 

In this paper, FOSMC has been firstly designed for two 

well-known nonlinear systems namely permanent magnet 

synchronous motor (PMSM) and plasma torch systems. By 

applying the proposed control plan on the systems in chaotic 

mode, the ability of proposed method to control chaotic 

behavior of system has been demonstrated adequately even in 

presence of uncertainty. Then, with the assumption that some 

part of system dynamics is uncertain and only some 

input-output data is partly available, adaptive neuro-fuzzy 

inference system (ANFIS) is used to estimate unknown part 

of the system dynamics based on the off-line input-output 

data. The main contributions and innovations of the present 

work which has not been investigated in the existing studies 

is as follows: 

- Applying FOSMC to uncertain chaotic systems, 

PMSM and plasma torch systems, for the first time 

- Combining ANFIS approximator with FOSMC 

method to control the system with unknown parts 

The organization of this paper is as follows. In Section 2, 

the system equations and the problem statement are presented. 

In Section 3, the FOSMC method is firstly introduced and 

then ANFIS approximator is proposed to estimate control law. 

In Section 4, the simulation results are presented and the 

conclusion are drawn in Section 5. 

 

II. SYSTEM EQUATIONS AND PROBLEM 

STATEMENT 

The proposed FOSMC method is designed for two 

nonlinear chaotic systems namely PMSM and plasma torch 

system. In this section, we introduce the dynamics of these 

systems. 

 

A. Permanent Magnet Synchronous Motor (PMSM) 

Because of high efficiency and power of PMSM and its 

low construction cost, it has been widely used in industry. In 

this system, by changing some parameters, system stability 

may be destroyed and the system may encounter chaotic 

behavior. In this study, SMC is applied, as one of the most 

applicable techniques of robust control, for controlling 

chaotic systems in presence of uncertainty [14]. PMSM 

chaotic system, introduced in [15], is described as: 

 

( )
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where ,  
d q

i i  and ω , as system state variables, 

respectively refer to direct axial current, quadrature axis 

current and angle speed. Moreover, ,  
d q

u u  and 
L

T  

respectively refer to direct axial axis voltage, quadrature axis 

voltage and external load torque. In addition, γ  and σ  are 

positive but uncertain parameters. If initial conditions and 

parameters are chosen as follows: 
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then, the system behaves chaotically [16]. The chaotic 

attractor is depicted in Fig. 1.  

Assuming 
1 2,  

q
x x iω= =  and 

3 d
x i= , the system can be 

recomposed as: 

 

where 
1 2
,  x x  and 

3
x  refer to state variables and u refers 

to control signal. 
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where 
1 2
,  x x  and 

3
x  refer to state variables and u  

refers to control signal. 

For ease of designing controller, PMSM system is divided 

to two subsystems. The first subsystem consists of two first 

equation of (3). The second subsystem includes third 

equation of (3). It should be noted that the second subsystem, 

i.e., 
3 3 1 2

x x x x= − +& , can be considered as dynamical 

equation inside the system. If 
1

x  and 
2

x  converge to zero, 

the second subsystem is converted to 
3 3

x x= −& , which 

asymptotically converges to zero. Therefore, the aim of 

control system is to design the control input u in the second 

subsystem, so that 
1

x  and 
2

x  are converged to 0. Changing 

variables in the following form: 

 
1 1

2 2 1
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y x

y x xσ

=

= −
 (4) 

Thus, the second subsystem can be written as: 
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2
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Where b  and ( )a x  are as follows: 
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 2 1 3 1 2 1( ) [ ( )]a x x x x x x x

b

σ γ σ

σ

= − − + − −

=
 (6) 

Where the system can contain a bounded uncertainty due 

to the existence of uncertainty in its parameters. Also, 

external disturbance can also be considered in this system. 

Thus, we have: 

 

 
Fig. 1. The phase portrait of PMSM system. 
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Where 1d  refers to external disturbance satisfying 

1 1| |d γ<  for 1 Rγ ∈  and a∆  refers to uncertainty where 

1| |a δ∆ <  for
1

Rδ ∈ . 

 

B. Plasma Torch System 

Rod-type plasma torch system is an example of chaotic 

system used widely in industrial applications. Mathematical 

model of the system, described in [17], is as follows: 

 3

2 1F F F F Fµ µ µ+ + + = ±&&& && &  (8) 

where ,  ,  F F F R∈& &&  and 
1 2

,  ,  Rµ µ µ ∈  are the 

system parameters. Parameters are depended on 

thermophysical properties such as electric art current and 

plasma gas flow rate. In this paper, without loss of generality, 

only 
3

F−  is considered. In this equation, the parameters 

have been considered as 
1

100µ =  and 
2

1µ = . Assuming 

1
F x= , 

2F x=&  and 
3F x=&& , (8) can be written as: 
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It has been shown that for 130µ = − , the system (9) 

performs chaotic behavior [18]. Chaotic behavior of plasma 

torch system is illustrated in Fig. 2. 

By adding disturbance and uncertainty to the model of 

system, the equation becomes: 
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Fig. 2. The phase portrait of Plasma torch system. 

 

Where 2d  refers to external disturbance satisfying 

2 2| |d γ<  for 2 Rγ ∈  and a∆  refers to uncertainty where 

2| |f δ∆ <  for
2

Rδ ∈ . 

 

C. Problem Statement 

Consider a high-order nonlinear system in the following 

canonical form: 
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Where n refers to the system order; 
1 2[ , ,..., ]T n

n
x x x x R= ∈   

is the system state vector; ( , ) 0b x t ≠  is a continuous 

function; ( , )f x t  refers to continuous and differentiable 

nonlinear function and u R∈  is the control input. Moreover, 

( , ) : nd x t R R→  is a partially known function representing 

uncertainty and external disturbance which satisfies the 

following condition: 

 ( , )
d

d x t I≤  (12) 

Where 0
d

I >  is a known limited constant. 

At the first, FOSMC method is designed for PMSM and 

plasma torch systems. Then, by assuming uncertainty in the 

system dynamics, input-output data is given and the system is 

approximated using ANFIS and it is utilized in control input. 
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III. PROPOSED METHOD 

A. Full-Order Sliding Mode Controller 

Designing SMC basically includes two steps, selecting 

sliding surface and designing sliding controller. Sliding 

surface should be selected in such way that system can 

behave desirably. The control aim is to guarantee that the 

system reaches sliding surface in finite-time and remain on it 

thereafter [19]. 

FOSMC can be considered for the systems in canonical 

form of Brunowski, similar to (11). In this method, sliding 

surface is defined as: 
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Where 
i

c  and 
i

α  (for 1, ,i n= K ) are constant design 

parameters. The parameters 
i

c  are chosen such that 

( ) ( 1)

2 1

n n

np c p c p c−+ + + +&L  is Hurwitz, and 
i

α  can be 

determined according to the following conditions: 
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Where (1 ,1)α δ∈ −  for (0,1)δ ∈ . The control input is 

chosen as: 

 1( , )( )
eq n

u b x t u u
−= +  (15) 

Assuming ( , ) 1b x t = , we have: 

 
eq nu u u= +  (16) 

where: 
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Where η  is a positive constant and 
T

k  and 
d

k  are 

selected in such way that following conditions are provided 

[20]. 
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Where T  is a non-negative constant. We have the 

following theorem: 

Theorem 1 [20]. If the sliding surface S  is selected as 

(13) and the control input is considered as (16), then the 

nonlinear system (11) will reach 0S =  in finite-time and 

thereby converge to zero along with 0S =  in finite-time. 

 

 

B. The Proposed Controller 

In majority of problems, especially in field of control 

engineering, mathematical model is usually unavailable or 

inaccurate due to the existence of presumptions. Control 

methods are highly depended on exact mathematical model 

and solving problems using these methods is always along 

with some difficulties. However, intelligent controllers as 

model-free methods and can reduce the dependency to the 

model. Hence, these methods can be adequately used in 

problems in which no mathematical model is available. The 

methods are also robust to model uncertainties and because of 

independence on mathematical model, they have usually 

more adequate performance than classic methods. Another 

advantage of these methods is their high compatibility, which 

allows the model to combine them with existing methods to 

create new combined methods to achieve reasonable solution 

[21]-[23]. Nowadays, fuzzy logic has become one of the most 

successful methods for development of complex control 

systems. The theory of fuzzy logic has been provided by 

Zadeh in 1965 [24]. With the growth of computer sciences, 

the fuzzy logic has been widely used in different fields such 

as control engineering, qualitative modeling, model 

identification, signal processing, artificial intelligence and so 

on [25]. Fuzzy approximation is an approach analyzing how 

to describe complicated functions by means of fuzzy 

(IF-THEN) rules. 

In this paper, ANFIS is used to approximate the uncertain 

part of the system dynamics. ANFIS consists of a knowledge 

base including a collection of M fuzzy rules with the 

following form: 
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Where i

j
A  is a fuzzy set in Rule i  associated with the 

membership function of ( )i
j

jA
xµ , for 1, ,i M= K  and 

1, ,j n= K .  Total function of ANFIS with n-input and 

single output can be written as: 
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Where i

j
a  and  

i
b are the parameters of ANFIS and 

i
w

is the weight of Rule i which is calculated by multiplying 

membership functions of IF part of Rule i, i.e., 

 
1
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j

n
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w xπ µ

=
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The membership functions i
jA

µ , are chosen as generalized 

bell function, which is described as ( ; , , )i
j

i i i

j j j jA
x a b cµ =  

2

1/ [1 ( ) / ]
i
jb

i i

j j jx c b+ −  . The parameters of ANFIS, i.e., i

j
p , 
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iq  and the parameters of these membership functions, i

j
a , 

i

j
b  and i

j
c  are adjusted using a hybrid learning algorithm 

(which is a combination of least-squares and backpropagation 

gradient descent methods,) to model a given set of off-line 

input-output data. By having off-line input-output data, the 

learning process can automatically be performed using Fuzzy 

toolbox of MATLAB software. It should be noticed that 

ANFIS parameters are constant during the control action. In 

the proposed method, ANFIS is used to approximate the 

unknown function using a set of off-line input-output data. 

After off-line training of the ANFIS, the parameters of 

ANFIS are considered as fixed values during control 

operation. 

Theorem 2 [26]. Let ( )f x  be a continuous function 

defined on a compact set Ω . Then for any constant 0ε > , 

there exists an ANFIS as (22), such that 

ˆ( ) ( )
x

Sup f x f x ε
∈Ω

− ≤  . 

The inputs of inference system are considered as states 

1 2
,  x x  and … and 

n
x  and the output can be ˆ ( )f x . By 

assuming system uncertainty in (11), a new control law called 

anfisu  is added to (16) and new control law is given as: 

 
eq n anfisu u u u= + +  (24) 

where 
equ  and 

anfisu  are considered as follows: 
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1 1 1
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eq n n n
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α α
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 ˆ
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In addition, 
n

u  is the solution of (18) and by assuming 

(0) 0
n

u = , we have: 

 ( ) (1 / )( )( 1)sgn( )Tt

n d Tu t T k k e Sη −= + + −  (27) 

According to universal approximation theorem, ANFIS 

defined as f̂  described by (22) has the capability to 

approximate every desired continuous function f  defined 

on a compacted set with favorable accuracy [27]. Similarly, 

the continuous function, f& , can be approximated with an 

ANFIS defined as f̂
&

. Therefore, there exist known constants 

φ  and β  such that: 

 

ˆ

ˆ

f f

f f

φ

β

− <

− <
&&
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Where φ  and β  are known constants defined as 

accuracies of approximations. 

We have the following theorem: 

Theorem 3. Assume that the system is in form of (11), the 

sliding surface S  is selected as (13) and the control law is 

presented as (24). The system states converge to zero in 

finite-time if Tφ β η+ <  is satisfied. 

Proof. Consider a Lyapunov function as: 

 21

2
V S=  (29) 

By taking derivative of (29), wet have: 

 V SS= &&  (30) 

Replacing (24) into (13), we have: 

 ˆ( ) nS f f u d= − + +  (31) 

Where d  satisfies (12) and (20). 

By taking derivative of (31) and replacing into (30), we 

have: 

 ˆ[( ) ]nV S f f u d= − + +
&& && &  (32) 

Considering the solution of (18) as (27), from (12), (20) 

and (31), we can write the following inequality: 
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Considering (20) and (28) in (32), we have: 
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On the other hand, we have: 
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Therefore, we can conclude that: 

 ( )V S T S S S Tβ ε η φ β η≤ + − ≤ + −&  (36) 

Thus, to make V&  negative, we must have: 

 Tφ β η+ <  (37) 

which completes the proof. 

This theorem shows that the proposed method can provide 

the stability for the system (11) with unknown part and the 

effect of approximation error can be compensated by 

appropriate selection of control parameterη . 

 

IV. SIMULATIONS 

A. PMSM System 

In this section, simulation results are illustrated by 

applying the proposed controller to PMSM system. In order 

to compare the results of the proposed method with similar 

methods, we firstly apply a TSMC method [13] to PMSM 

system. The results are shown in Fig. 3. 

Now, we apply the proposed FOSMC technique to PMSM 

system. The initial states of (20, 0.01, -5) are assumed. In 

addition, the coefficients and parameters in the sliding 

surface and the control law are considered as follows: 

 
1 2 1 2

100,  50,  1 / 3,  5 /10c c α α= = = =  (38) 

 0.1,  ( ) 10
d T

T k k η= + + =  (39) 

The states and the control law are converged to zero as 

shown in Fig. 4. 

By considering chaotic condition and applying uncertainty 

as (40), it could be observed that the controller is able to 
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control the chaotic system similar to previous case and 

perform a good convergence. 

 
1 2 30.2sin( )sin( )sin( ),   0.2f x x x fπ π π∆ = ∆ ≤  (40) 

When a part of system dynamics is uncertain, it is 

approximated using ANFIS, system behavior is depicted in 

Fig. 5. 

It can be seen that FOSMC provides better response 

compared with TSMC. The use of ANFIS can also improve 

the results. The existence of uncertainty has not affected on 

the results and the proposed ANFIS-based FOSMC technique 

has a satisfactory performance. 

 
Fig. 3. Time response of states and control signal with TSMC for 

PMSM system. 

 
Fig. 4. Time response of states and control signal with FOSMC 

for PMSM system. 

 
Fig. 5. Time response of states and control signal with 

ANFIS-based FOSMC in the presence of uncertainty for PMSM 

system. 

 

B. Plasma Torch System 

Applying TSMC method [13] to plasma torch system, the 

results are depicted in Fig. 6. 

Now, by applying the proposed FOSMC technique to 

plasma torch system with regard to exiting parameters of 

controller as (41) and (42), the states and the control law are 

shown in Fig. 7. 

 
1 2 3

1 2 3

300,  150,  50,

9 /12,  9 /11,  9 /10

c c c

α α α

= = =

= = =
 (41) 

 0.1,  ( ) 10
d T

T k k η= + + =  (42) 

 
Fig. 6. Time response of states and control signal with TSMC for 

rod-type plasma torch system. 

 
Fig. 7. Time response of states and control signal with FOSMC 

for rod-type plasma torch system. 

 
Fig. 8. Time response of states and control signal with 

ANFIS-based FOSMC in the presence of uncertainty for 

rod-type plasma torch system. 
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It can be observed that using TSMC, although the 

convergence is acceptable, but due to existence of steady 

state error, the results are not satisfactory. By utilizing 

FOSMC the stabilization has been improved. When a part of 

the system is unknown, the results are shown in Fig. 8. It is 

also seen that using the proposed ANFIS-based FOSMC, the 

effects of uncertainty are in acceptable range. 

V. CONCLUSIONS 
 

In this study, FOSMC method based on ANFIS has been 

applied for controlling chaotic nonlinear systems. The 

proposed method provides both FOSMC and ANFIS 

advantages simultaneously. A nonsingular design and 

chattering-free response together with finite-time robustness 

against uncertainty is gained while the model of the system 

includes unknown parts. The method has been applied to 

well-known chaotic nonlinear systems, i.e., PMSM and 

plasma torch systems, and the simulation results show the 

effectiveness of the proposed technique. At first, regardless of 

uncertainty, it has been observed that the FOSMC method has 

the ability to meet uncertain chaotic nonlinear systems. Then, 

the situation for which the system dynamics includes 

unknown parts, is considered and it has been found that 

ANFIS has the ability to approximate the unknown part such 

that the responses of FOSMC has not been affected. Although 

the method is applicable to the other chaotic systems and also 

to chaotic neural networks, but at this stage, our aim is to 

apply the proposed method to some well-known chaotic 

systems in which SMC-based methods have been studied in 

the literature and therefore, the comparison on the effects of 

chaos and uncertainty can be investigated. However, it is the 

goal of our future research work to apply the proposed 

method to the other systems. 
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