
 International Journal of Industrial Electronics, Control and Optimization .© 2018   IECO…. 
  Vol. 1, No. 2, pp. 133-142,  June (2018) 
 

 
Designing an Optimal Linear Bid Function in a  
Pay-as-Bid Electricity Market 
 

Javid Khorasani †, Ehsan Monabbati *, and Habib Rajabi Mashhadi ** 
 
†Department of Electrical Engineering, Khorasan Institute of Higher Education, Mashhad, Iran  
*Department of Mathematics, Alzahra University, Tehran, Iran 
**Department of Electrical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran 
 

 
 

In this paper, bidding problem in electricity markets is formulated from the viewpoint of a generation company. With 
focus on Iran's electricity market structure, the objective is to design an optimal linear bid function considering pay-as-bid 
pricing mechanism. The market clearing price is considered as a stochastic variable. The bidding problem is explained as a 
nonlinear optimization problem from the viewpoint of a price-taker generation company. Then, a numerical study is 
performed to show the effect of stochastic characteristics of market price on the optimal values of bidding parameters. In 
order to have more expected profit, a mathematical problem is designed and solved to partition the generation capacity. An 
example is designed to calculate a linear bid function using the proposed technique. Also a comparison between step-wise 
and linear bidding is presented. 
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Nomenclature  

CሺPሻ GenCo’s cost function
P  GenCo’s generated power 
A , B The cost function coefficients 
ΡሺPሻ GenCo’s bid function
Α ,Β The bid function coefficients 
PMAX GenCo’s generation capacity 
ΡM  MCP 
PE The dispatched capacity in the electricity market
 ௠ሻ GenCo's profitߩఈ,ఉሺߨ
E{Π} GenCo's expected profit 
FΡM

(.)  The  probability density function of the electricity 
MCP 

Α∗ The optimal value of α
FΡM

(.) The cumulative distribution function of the 
electricity market clearing price 

,ߪ Standard deviation and mean value of the MCP ߤ

I. INTRODUCTION 

A. Motivation  
In an electricity pool auction, generation companies 

(GenCos) offer their generation capacities. Also, in a double 
sided market, consumers offer their demand. Then an 
Independent System Operator (ISO) clears the market based 
on received bid functions considering system requirements. 
The GenCo’s goal is to increase its profit, which can be 
achieved through strategic bidding in electricity markets [1]. 
This paper proposes a new method to design supply function 
from the viewpoint of a GenCo. 

 
B. Literature Review  

Bidding strategy problem has been widely explored in the 
literature. In [1], the different methods are classified into four 
categories. In the first class, the bidding problem is solved 
estimating market price. In the second, the behaviour of rivals 
is estimated in order to design bidding strategy. In the 3rd and 
4th classes, respectively, game theory and heuristic methods 
are used to solve the problem. Similarly, in a recent work, the 
literatures are classified slightly different in [2]. Single 
GenCo optimization models, game theory based models, 
agent-based models, and hybrid models constitute the four 
proposed categories in [2].  References [3-9] are examples 
of the stated above categories, respectively. 

 In [10], a bi-level optimization method is proposed, in 
which the bidding coefficients of rivals are assumed to follow 
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a joint normal probability distribution function. In a single 
GenCo optimization point of view, the GenCo simulates the 
rivals’ behavior and thereupon calculates the market results. 
A similar method is used in [11] and [12] for bidding 
problem in energy and reserve multi-markets. 

In [13] a stochastic method is proposed to calculate a 
step-wise bid function in an electricity market with uniform 
pricing mechanism. In this method, it is assumed that the 
historical information about the behavior of rivals is readily 
available. It is obvious that this assumption is away from 
reality. 

In [14] a piecewise staircase bid function is optimally 
calculated using linear programming in two cases, complete 
and incomplete information. In the first case, it is assumed 
that the complete information on system conditions and rivals 
strategies is available. In the latter case, different scenarios 
are generated based on the probability distribution of 
historical information of demand levels and strategic policies 
of the competitors. Low, normal, and high levels for demand, 
and low (bidding at marginal), normal (bidding at %110 of 
marginal), and high (bidding at %120 of marginal) levels for 
the rivals’ behavior have been considered. The need to 
scenario analysis and reduction in different market conditions 
makes the proposed method to be time consuming and makes 
the results to be far from the optimal values in practice. 

In [4], a classical optimization method is proposed in 
which the market clearing price (MCP) is assumed to be 
stochastic variable followed a probability density function 
(PDF). The method is used to find a closed form for optimal 
bidding prices in a step-wise bidding problem. An extension 
of the method proposed in [4] for bidding problem in 
only-energy markets, is utilized by the authors for strategic 
bidding in joint energy and reserve markets [15,16]. 

In [17] and [7], Q-learning (QL) approaches are suggested 
to solve the optimal bidding strategy problem, respectively, in 
only-energy markets and joint energy and reserve markets. In 
the mentioned papers, to verify the performance of the QL 
method, an extension of the method proposed in [4], is 
utilized. 

A min-max regret approach, in a uniform pricing 
environment, is presented in [18] for a bidding and 
scheduling problem, based on the confidence intervals of 
price forecasts. To design a bidding curve, the electricity 
price interval is partitioned into several subintervals. Then, 
for each subinterval, the proposed min-max regret model is 
solved to obtain an optimal generation capacity.  

In [19] and [20] four different available parameterization 
methods are investigated for the construction of the optimal 
linear supply function bids with varied slope and/or the 
intercept of the marginal cost functions. In fact, in this 
approach the impact of the choice of the parameterization 
method on the market equilibrium solution is examined. 
Finally, the study concludes that the solutions for all the 

parameterization methods are very similar for no 
transmission congestion and no strict voltage limits. But, in 
large systems, no pattern is concluded and each 
parameterization method results different number of 
congested lines and different network operational conditions. 

 
C. Contributions  

In this paper, an extension of the method proposed in [4] is 
presented for the linear bidding problem. According to the 
categories defined in [1] and [2], the method is a single 
optimization model based on market price estimation. In [4], 
the bidding problem is formulated assuming a linear cost 
function for a GenCo, and optimal bidding prices for a 
step-wise bid function are calculated. The generation capacity 
is not considered as an optimization variable, in [4].  

In this paper, the market price is assumed to follow a 
probability density function. Then, independent of the type of 
the PDF, the expected profit of the GenCo is formulated, 
considering a linear bid function. The optimal values of the 
intercept and slope of the bid function can be calculated 
through optimizing the objective function. 

Moreover, it will be shown that the maximum expected 
profit can be greatly obtained by bidding less than the total 
capacity. Consequently, due to the prohibition of physical 
withholding in electricity markets, the GenCo should split its 
generation capacity and find the optimal bid function for each 
section. In this case, the expected profit increases. Therefore, 
our main contribution is to use the extended method, which 
considers the generation capacity as an optimization variable, 
to find the optimal linear bid function in a pay-as-bid (PAB) 
wholesale electricity market. It should be noted that the bid 
function will cover the total generation capacity and physical 
withholding will not occur.  

 
D. Paper Organization 

In the following, the market structure is explained in 
section 2 and the strategic bidding problem is formulated in 
section 3. The capacity partitioning procedure is 
comprehensively described in section 4, and an example is 
presented. 

II. STRUCTURE OF THE CONSIDERED 
MARKET 

The wholesale hour-ahead single-sided electricity market, 
which is considered in this paper, is run on PAB pricing 
mechanism, similar to the Iran's electricity market structure. 
The main agents are GenCos and the independent system 
operator. The GenCos bid their piece-wise linear bid 
functions for energy as a commodity, to the electricity market. 
After aggregating the all submitted bid functions from all 
market participants, the ISO clears the energy market and 
publishes the highest accepted bid, called in this paper as the 
market clearing price, and informs GenCos from their 
accepted bids. It is assumed in this paper that the MCP is 



International Journal of Industrial Electronics, Control and Optimization .© 2018   IECO….135 
 

publicly available or GenCos estimate it, based on their 
historical lost and won bidding prices. The above 
explanations have been summarized in Fig.1. 

It should be noted that the proposed method can be easily 
utilized in a double sided auction and/or in a multi-unit 
bidding problem. Also, it is assumed that the GenCo is a 
price-taker that cannot affect the marginal market price. 

According to the assumption of an hour-ahead bidding 
problem and in order to simplify the problem, the physical 
constraints, for example, ramp rate, have not been considered. 
It can be assumed that, for the next hour, the GenCo’s 
maximum available capacity is known as pmax. 

 

III. PROBLEM DESCRIPTION 

Market clearing price and GenCos’ bidding strategy can be 
affected by several factors such as market structure, energy 
demand, rivals’ behavior, and power system constraints like 
transmission and generation outages. Therefore, using the 
MCP, the market behavior can be modeled and analyzed. 
Additionally, the MCP is uncertain because of uncertainties 
in power system and in participants’ actions, and therefore it 
can be assumed as a random variable [17]. In [21] it is 
proposed, in each load level, to use a probability density 
function in order to model and to summarize electricity 
market price behaviors. 

In this paper, the strategic bidding problem is designed and 
formulated based on the approximated PDF of electricity 
market prices from the viewpoint of a price-taker GenCo. The 
PDF of MCP can be approximated based on the historical 
available information of market clearing prices. In some 
electricity markets, that the MCP is not available, at least, the 
weighted average prices are available and the stated above 

PDF can be constructed using this available data. The 
proposed method is also applicable in this case and it is 
obvious that bidding risk will be lower in this situation. 

In the following, at first, the basic problem from the 
viewpoint of a GenCo is defined. Then the proposed method 
for constructing an optimal piecewise linear electricity supply 
function, is formulated and described. 

 
A. GenCo’s profit 

GenCo’s cost function is assumed to be quadratic,  

cost(p)=fixed cost+ ap+
1

2
b݌ଶ. Therefore, the marginal 

cost, Cሺpሻܯ	  is a+ bp , where p is the generated power. 
GenCo’s linear bid function, ρሺpሻ, is assumed at first, a 
one-piece linear as α+βp. The MCP, ߩ௠, which does not 
depend on price-takers’ behavior, the marginal cost function 
and the linear bid function are presented in Fig.2. 

If the maximum of bid function is lower than the MCP, the 
GenCo should deliver ݌௘ MW, in accordance with the MCP, 
in the specified hour to the electricity market. It should be 
noted that due to the assumption of a price-taker GenCo, the 
interaction of bid function and market price, which is shown 
in Fig.2, may occurs when the competition level is high. 

Obviously, the shaded area in Fig.2 shows GenCo’s profit. 
The basic problem is to calculate the optimal values of bid 
function coefficients. Also, as will be explained in the final 
section, the bidding capacity, pe , can be considered as a 

variable. Thus, the GenCo can optimally partition its 
available generation capacity, pmax, to construct a complete 
piecewise linear bid function on its total generation capacity. 

It should be noted that the method for modelling the basic 
problem is originally proposed by [4] in which a linear (not 
quadratic) cost function is considered and a one-step (not 
linear) bidding problem is designed.  

Furthermore, with a new point of view, to split the 
generation capacity and increase the expected profit, the 

 
Fig. 1. The considered market structure 
 

 
 Fig. 2. The marginal cost and the linear bid functions 
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introduced method in [4] is extended by considering the 
bidding capacity as a decision variable. The proposed method 
can be used in different conventional types of strategic 
bidding formulation, such as fixed slope, fixed intercept, 
marginal cost multiplication, and so forth. 

 
B. Expected Profit of the GenCo 

As stated before, the bid function is assumed as 
ρ(p)=α+βp, 0≤p≤݌e ൑ pmax . Therefore, the profit of the 

GenCo is the shaded area in Fig.2 and is calculated by 

π=(α-a)pe+
1

2
ሺβ-bሻpe

2. (1) 

Obviously, the bidding price acceptance depends on MCP 
which is a stochastic variable. Thus, GenCo's profit is a 
piecewise function of ߩ௠: 
௠ሻߩఈ,ఉሺߨ

ൌ

ە
ۖ
۔

ۖ
ۓ
0, ௠ߩ ൏ ,ߙ

ሺߙ െ ܽሻ݌௘ ൅
1
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ሺߚ െ ܾሻ݌௘ଶ, ߙ ൑ ௠ߩ ൏ ߙ ൅ ,௠௔௫݌ߚ

ሺߙ െ ܽሻ݌௠௔௫ ൅
1
2
ሺߚ െ ܾሻ݌௠௔௫

ଶ , ߙ ൅ ௠௔௫݌ߚ ൑ ,௠ߩ

 
(2) 

where, ρm is the MCP, pmax	is the GenCo’s total capacity, 

and  pe ൌ
ఘ೘ିα

β
  is the dispatched capacity in the electricity 

market.  

 In fact, the definition of ߨఈ,ఉሺߩ௠ሻ in Equ. (2) states that 

for bidding prices not greater than MCP, the GenCo wins the 

competition and sells its generated power to the market.  

The profit expectation of the GenCo is calculated as: 

E{π}=න ௠ሻߩఈ,ఉሺߨ
ାஶ

ିஶ
ρ݂m
൫ρm൯݀ρm, (3) 

where fρm
(.)  is the probability density function of the 

electricity MCP, ρm. 

Considering Equs. (2) and (3), one can see that GenCo’s 

expected profit is: 

  max

max

max

max

2( , ) ( )

( , ) ( )

( , ) ( )

( , ) ( ) ,

m

m

m

m

p

m m m

p

m m m

p

m m

m mp

E A f d

B f d

C f d

D f d

 



 



 



 

     

    

   

   











  

  

 

 






 

(4) 

in which 

2

2

2

2

2
max max

1 ( )
( , )

2

( , )

( )
( , )

2

1
( , ) ( ) ( ) .

2

b
A

b a
B

b a
C

D a p b p

 


  


   
 

   







 
 

   
 

(5) 

In a specific case, if β=b=0, then the expected profit of the 
resulting step-wise bid function is: 

max{ } ( ) [1 ( )],
m

E a p F    
 (6) 

and the optimal value of α is 
*

*
*

1 ( )
,

( )
m

m

F
a

f










 
 

(7) 

where Fρm
(.) is the cumulative distribution function (CDF) 

of the electricity MCP, ρm, and 1-Fρm
(α), is the probability 

of acceptance of α or the probability of acceptance of the total 
bidding capacity. Equs. (6) and (7) previously presented in 
[4].  

In general, it is assumed that  ߚ ൌ ܾ ് 0. So, GenCo’s 
expected profit is: 

  max

max

max max

( )

( )
[ ( ) ( )]

( ) [1 ( )].

bp

m m m

a
E f d
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(8) 

In [22], it is shown that electricity market prices usually 
follow normal distribution in medium and low load levels. 
The graphical illustrations of the expected profit versus α, for 
different values of the mean and the standard deviation of 

 
Fig. 3. Expected profit versus α (a=25,b=0.1, pmax=200) for 

normally distributed market prices with =6 and different mean 
values 
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market price, are given in Fig.3 and Fig.4, respectively, when 
ߚ ൌ ܾ and MCP follows a normal distribution. The statistical 
parameters of market price are selected according to [22]. 

It can be seen in Fig.3, and Fig.4 that the expectation of the 
profit is sensitive to statistical characteristics of the electricity 
market price. 

 
C. GenCo's Objective Function 

According to the above explanations, the GenCo should 
find the optimal values of α and β in order to maximize the 
expected profit. Therefore the objective of the GenCo is to 

 
maximize

ఈ,ఉ
E{π} 

subject to 
α+βp࢞ࢇ࢓ ൑ Price Cap. 

(9) 

 
The GenCo calculates the optimal values of bid function 

parameters, ߙ∗andߚ∗ . The expected profit in Equ. (9) is 
calculated according to Equs. (4) or (8). The problem (9) can 
be solved numerically using nonlinear optimization methods. 

 

IV. APPLICATION IN DESIGNING OPTIMAL BID 
FUNCTION 

In this section, we use GenCo's objective function (9) to 
split the generation capacity in order to increase the expected 
profit. First, we explain the necessity of the capacity splitting, 
and then, present the corresponding optimization problem. It 
should be emphasized that in the modeling method of this 
paper, the type of PDF of market price is not important and 
not effective. But, in the rest of the paper, it is assumed 
mostly, that the market price follows a normal probability 
density function.  

 
 
 

 We plot the expected profit versus bidding capacity, pe, 
for different values of α, when β=b, and MCP is a normal, 
Fig.5, and lognormal, Fig.6, distributed random variable.  It 
seems that, independent of the MCP model, almost maximum 
expected profit is attained by bidding less than the total 
capacity, pmax. Since the physical withholding is forbidden in 

electricity markets, we will show how to use the above 
conclusion to split the generation capacity in order to design 
an optimal bid function. 

In what follows, a method is proposed to optimal capacity 
splitting and numerical results are presented. 

 
A. Capacity splitting  

According to Figures 5 and 6, it can be concluded that 
splitting the generation capacity can increase the expected 
profit. Here, finding the optimal splitting is formulated as a 
nonlinear optimization problem. 

To maximize the expected profit, we partition the 
production capacity space, ሾ0, ௠௔௫ሿ݌ , into ݊  intervals 
଴ܫ ൌ ሾ݌଴, ଵሿ݌ ଵܫ , ൌ ሾ݌ଵ, ଶሿ݌ , ⋯ ௡ିଵܫ , ൌ ሾ݌௡ିଵ, ௡ሿ݌ , where 
଴݌ ൌ 0 ௡݌ , ൌ ௠௔௫݌  and ݊  is a prespecified integer 
parameter. Note that, in optimal partition, the number of 
subintervals may be less than ݊;  that is, ݌௞ ൌ ௞ାଵ݌  for 
some ݇.  

For ݇ ൌ 0,⋯ , ݊ െ 1 , let ܧூೖ	  be the restriction of the 

expected profit function (9) on interval ܫ௞ that is, 
 

ఈ,ఉൟߨூೖ൛ܧ ൌ
ߙ െ ܽ௞
ܾ

න ௠ߩ௠ሻ݀ߩ௠݂ሺߩ
ఈା௕௣ೖశభ

ఈ
	

െ
ߙሺߙ െ ܽ௞ሻ

ܾ
൫ܨሺߙ ൅ ௞ାଵሻ݌ܾ െ ሻ൯ߙሺܨ

൅ሺߙ െ ܽ௞ሻ݌௞ାଵ൫1 െ ߙሺܨ ൅ ,௞ାଵሻ൯݌ܾ

 (10) 

 
where ܽ௞ ൌ ܽ௞ିଵ ൅ ݇ ,௞݌ܾ ൌ 1,⋯ , ݊ െ 1, and ܽ଴ ൌ ܽ. 

Then, the restriction of maximum expected profit problem 
on interval ܫ௞ ൌ ሾ݌௞,  ௞ାଵሿ is݌

 
Fig. 4. Expected profit versus α (a=25, b=0.1, pmax=200) for 
normally distributed market prices with µ=32 and different 
values of standard deviation. 
 

 
Fig. 5. Expected profit versus pe (a=25, b=0.1, pmax=200, 
ρm ൎN(30,6)) 
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max
ఈ

ఈ,௕ൟߨூೖ൛ܧ

	ܽ௞ ൑ ߙ ൑ Price Cap.
 (11) 

 
Given a vector ݌ ൌ ሺ݌଴, ,ଵ݌ ⋯,ଶ݌ , ,௡ିଵ݌ 	௡ሻ݌ of 

intermediate points, the total expected profit of GenCo could 
be determined by solving the following optimization 
problem: 

ሻ݌ሺݖ ൌ max
ఈୀሺఈబ,⋯,ఈ೙షభሻ

෍ܧூೖ൛ߨఈೖ,௕ൟ

௡ିଵ

௞ୀ଴

	 	

	ܽ௞ ൑ ௞ߙ ൑ Price Cap. 	݇ ൌ 0,⋯ , ݊

 (12) 

 
Now, the objective is to maximize ݖሺ݌ሻ subject to  
 

଴݌ ൌ 0,	
ଵ݌ ൑ ଶ݌ ൑ ⋯ ൑ 	,௡ିଵ݌
௡݌ ൌ  .௠௔௫݌

(13) 

 
In summary, the whole optimal bidding problem, including 

capacity partitioning and corresponding prices, is to 

maximize
௣

ሻ݌ሺݖ ൌ max
஑

෍ܧூೖ൛ߨఈೖ,௕ൟ

௡ିଵ

௞ୀ଴

  

subject to: (14) 
ܽ௞ ൑ ௞ߙ ൑ Price Cap ݇ ൌ 0,⋯ , ݊
଴݌ ൌ 0,
ଵ݌ ൑ ଶ݌ ൑ ⋯ ൑ ,௡ିଵ݌
௡݌ ൌ .௠௔௫݌

	
  

 
The above optimization problem could be used to 

determine the optimal bidding strategy. Given partition p of 
size ݊ ൅ 1, problem (12) could be handled by solving ݊ 
single optimization problem of type (11). In what follows, we 
show that optimization problem (11) could be solved 
efficiently when MCP random variable follows normal PDF, 
ܰሺߪ, ሻߤ . We begin by showing that the derivative of 

objective function of expected profit, as a function of ߙ, 
has a zero in ሾܽ,∞ሻ . Note that, in these lemmas, we 
perform symbolic computations by Wolfram Mathematica 
[23].   

 
Lemma 1. We have  

ௗா

ௗఈ
ൌ ܦ ܼ,   

ௗమா

ௗఈమ
ൌ

஽

ఙ
൫2ܥଵߪ ൅ ଷሺܽܥ െ  ,ሻ൯ߙ

 
Lemma 2. ݀ߙ݀/ܧ has a zero in ሾܽ,∞ሻ. 

where  
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൰, 

ܶ ൌ ߨ√2 exp ቆ
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ଶߪ2
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Proof.  
For ߙ ൌ ݇	ܽ, ݇ ∈ Գ, the value of  ܼ is 

ܼ ൌ ݁௫
మାሺ௫ା௬ሻమ√2√݄ߪߨሺݔ,  ሻݕ

൅ܽ݁௫
మାሺ௫ା௬ሻమሺെ1 ൅ ݇ሻ√ߨሺerf ݔ െ erfሺݔ ൅  ,ሻሻݕ

where 
݄ሺݔ, ሻݕ ൌ ݔ erf ݔ െ ሺݔ ൅ ሻݕ erfሺݔ ൅ ሻݕ ൅ ݕ

െ
1

ߨ√

݁௫
మ
െ ݁ሺ௫ା௬ሻ

మ

݁௫మାሺ௫ା௬ሻమ	
, 

and 

ݔ ൌ
݇	ܽ െ ߤ

ߪ	2√
ݕ			, ൌ

݌ܾ

ߪ2√
. 

If ݇ ൌ 1; that is, ߙ ൌ ܽ, we have 

ܼ ൌ ቀ݁௫
మାሺ௫ା௬ሻమ√2√ߨ	ߪ	݄ሺݔ,  .ሻቁݕ

We show ݄ሺݔ, ሻݕ ൒ 0 if ݕ ൒ 0. Indeed, given ݔ, ݄ሺݔ,  ሻݕ
has the derivative 1 െ erfሺݔ ൅ ሻݕ ൐ 0 . Thus,  ݄ሺݔ, ሻݕ  is 
increasing as a function of ݕ. Thus ݄ሺݔ, ሻݕ ൒ ݄ሺݔ, 0ሻ ൌ 0. 

Therefore, for ߙ ൌ ܽ, we have ܼ ൐ 0. 
We show for sufficiently large ݇ , the value of ܼ  is 

negative. 
One can write ܼ  as 

ܼ ൌ √2݁
ሺೌೖశ್೛షഋሻమ

మ഑మ ߪ ൅ ݁
ሺషೌೖశഋሻమ

మ഑మ ൬ܾ݁
ሺೌೖశ್೛షഋሻమ

మ഑మ ߨ√݌ െ ൰ߪ2√

൅ ݁
ሺೌೖశ್೛షഋሻమశሺషೌೖశഋሻమ

మ഑మ ߨ√ ൭ሺܽ െ 2ܽ݇

൅ ሻߤ erf ൬
െܽ݇ ൅ ߤ

ߪ2√
൰

൅ ሺܽሺെ1 ൅ 2݇ሻ ൅ ݌ܾ

െ ሻߤ erf ൬
െܽ݇ െ ݌ܾ ൅ ߤ

ߪ2√
൰൱. 

  

 
Fig. 6. Expected profit versus pe (a=25, b=0.1, pmax=200, 
ρm ൎ  (N(3.4,0.2)݃݋݈
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Substituting ݔ erf and erf ,ݔ by ݔ  by 1, for large value ݔ
of ݔ, we have 

ܼ ൌ ߪ	2√ ൬݁
ሺೌೖశ್೛షഋሻమ

మ഑మ െ ݁
ሺషೌೖశഋሻమ

మ഑మ ൰ ൏ 0. 

Thus ݀ߙ݀/ܧ has a zero in ሾܽ,∞ሻ 

We use bisection method to find the root ߙ∗ of ܼ. Then, 
using Lemma 1, we can check the value of ݀ଶߙ݀/ܧଶ at ߙ∗ 
to determine whether ߙ∗ is a maximizer or not. 
 

Table I 
COMPARISON BETWEEN ONE-PIECE AND OPTIMAL BIDDING (for n=5) 

Cost parameters Expected Profit Monte Carlo simulation 

a b Linear One-piece bidding Optimal bidding 
Expectation of 

Profit 

Chance of loss in Optimal 

bidding (%) 

Chance of loss in One-piece 

bidding (%) 

10 0.05 1615.39 1673.33 1443.62 0.60 0.60 

10 0.1 1002.55 1108.30 915.25 0.65 0.65 

10 0.15 675.25 761.06 604.58 0.62 0.62 

10 0.2 506.46 571.16 451.07 0.61 0.61 

15 0.05 1007.44 1041.76 993.64 10.62 10.62 

15 0.1 586.84 635.21 585.66 10.40 10.40 

15 0.15 392.80 428.10 386.31 10.51 10.51 

15 0.2 294.60 321.10 289.22 10.44 10.44 

20 0.05 535.98 551.47 547.79 39.42 49.75 

20 0.1 294.81 311.22 295.08 38.67 49.90 

20 0.15 196.78 207.73 194.21 37.70 50.04 

20 0.2 147.59 156.07 146.65 38.35 49.92 

25 0.05 227.47 232.27 232.64 56.88 89.25 

25 0.1 119.73 123.65 120.19 56.43 89.34 

25 0.15 79.84 82.48 80.43 56.31 89.23 

25 0.2 59.88 61.86 59.68 56.45 89.57 

 

V. NUMERICAL RESULTS: DESIGNING OPTIMAL 
BID FUNCTION  

In the considered decision making problem, as presented 
before, the generation capacity is divided into n parts and the 
optimal intercept parameter is calculated for each part 
through maximizing expected profit, Equs. (9) or (14). The 
optimal parameters, calculated in each part of capacity split, 
are used by GenCo to create a temporary supply function. 
Then, GenCo aggregates the MWs with equal prices in the 
temporary supply function, to derive the strategic bid 
function. The strategic bidding problem can be solved by a 
GenCo in practice as stated above. The process is 
demonstrated in the following, by a numerical example.  

To solve problem (14), for a specific value of n, Particle 
Swarm Optimization (PSO) method with mutation has been 
used. Each particle is defined to be a partition of generation 

capacity to n parts. For each part, α is optimized using Equ. 
(11). Expected profit z(p), which is the summation over the 
parts, is set as the fitness function. 40 utilized particles are 
initialized. The PSO algorithm converges in less than 200 
iterations to the optimal partition.   

Moreover, for a complete comparison, the expectation of 
profit is calculated using a Monte Carlo simulation. Also, a 
comparison between one-piece bidding and the proposed 
optimal bidding is performed with both classic and Monte 
Carlo methods. It can be seen in Table I, that the expected 
profit of optimal bidding is 2-12% more than one-piece 
bidding. Also, the chance of loss; that is, the percent number 
of times in which minimum bidding price is more than the 
market price, for one-piece bidding is more than optimal 
bidding and increases significantly with the operating cost. 
Example. A simple example is presented here to demonstrate 
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the proposed procedure for a GenCo with pmax=200MW, 
a=25$/MWh, and b=0.1 $/MWh2. For simplicity let ߚ ൌ ܾ. 
The market price is assumed to be a Gaussian distributed 

variable with µ=30 and =6.  
Fig.7 shows the temporary supply function, which is 

calculated from Equ. (9) with n=5 using PSO algorithm. The 
numerical values, corresponding to Fig.7, are presented in 
Table 2. Fig.8 shows the convergence curve for the PSO 
algorithm.  

 
Fig. 7. Temporary supply function: result of the calculation of 
optimal values 

 
Table II 

OPTIMAL VALUES OF OPTIMIZATION PROBLEM (14) (a=25, b=0.1, 
pmax=200, ρm ൎN(30,6)) 

Section No. (i) pi(MW) ࢻ∗, $ 
1 18.25 37.50 
2 21.18 30.98 
3 26.11 32.06 
4 36.51 33.41 
5 97.95 35.24 

 

 
Fig. 8 Average value of particles of PSO algorithm. 

Fig.9 shows the optimal bid function obtained by 
aggregating results which are shown in Fig.7. 

VI. CONCLUSION AND FUTURE WORKS 

In this paper a method is proposed for optimal calculation 
of the parameters of a piece-wise linear bid function in a PAB 
auction. It is assumed that the market price is a random 
variable which follows a probability density function. The 
bidding problem is classically formulated to find the optimal 
values of supply function parameters: intercept and slope. 
The method is extended in order to optimally partition the 
generation capacity and to construct the optimal bidding 
strategy from the viewpoint of a GenCo. Employing the 
proposed technique, a price-taker GenCo can partition its 
total generation capacity and optimize the parameters of the 
bid function, in the same time. 

The linear bidding problem, based on the presented method, 
can be reconstructed from the view point of buyers, for 
example, distribution companies, retailers, large consumers 
and so forth, which will be considered in our future works. 
Moreover, the extension of method to a day-ahead bidding 
problem, considering the constraints of unit commitment 
problem is, assigned to the future works.   
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